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Traceability is defined as the ability to establish, record, and maintain dependency re-

lations among various software artifacts in a software system, in both a forwards and back-

wards direction, throughout the multiple phases of the project’s life cycle. The availability

of traceability information has been proven vital to several software engineering activi-

ties such as program comprehension, impact analysis, feature location, software reuse, and

verification and validation (V&V).

The research on automated software traceability has noticeably advanced in the past

few years. Various methodologies and tools have been proposed in the literature to provide

automatic support for establishing and maintaining traceability information in software

systems. This movement is motivated by the increasing attention traceability has been

receiving as a critical element of any rigorous software development process. However,

despite these major advances, traceability implementation and use is still not pervasive in

industry. In particular, traceability tools are still far from achieving performance levels
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that are adequate for practical applications. Such low levels of accuracy require software

engineers working with traceability tools to spend a considerable amount of their time

verifying the generated traceability information, a process that is often described as tedious,

exhaustive, and error-prone.

Motivated by these observations, and building upon a growing body of work in this

area, in this dissertation we explore several research directions related to enhancing the

performance of automated tracing tools and techniques. In particular, our work addresses

several issues related to the various aspects of the IR-based automated tracing process,

including trace link retrieval, performance enhancement, and the role of the human in

the process. Our main objective is to achieve performance levels, in terms of accuracy,

efficiency, and usability, that are adequate for practical applications, and ultimately to ac-

complish a successful technology transfer from research to industry.

Key words: Traceability, Information Retrieval, Indexing, Semantics, Clustering, Refac-
toring, Information Foraging
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CHAPTER 1

INTRODUCTION

This chapter defines traceability, its benefits and applications, and briefly reviews the

state-of-the-art in establishing and maintaining traceability in practice. In addition, in this

chapter we describe our main research objectives, associated research questions, and ex-

perimental settings.

1.1 Software Traceability: A Definition

Traceability has been defined in the literature in various ways. Earlier views on trace-

ability can be traced back to 1978. In particular, Greenspan and McGowan [102] defined

traceability as “a property of a system description technique that allows changes in one of

the three system descriptions - requirements, specifications, implementation - to be traced

to the corresponding portions of the other descriptions. The correspondence should be

maintained through the lifetime of the system”. In 1984, the term traceability appeared in

the IEEE Guide to Software Requirements Specifications (IEEE-830) as a technique for

“enabling the traceability of a requirement back its origin, and facilitating the referencing

of each requirement in future development or enhancement documentation” [122]. In this

definition, the notion of bidirectional traceability (backward and forward) was introduced.

This notion later appeared in the definition coined by Gotel and Finkelstien in 1994, who

1



www.manaraa.com

defined traceability as “the ability to describe and follow the life of a requirement, in both a

forward and backward direction (i.e., from its origins to its subsequent deployment and use,

and through all periods of on-going refinement and iteration in any of these phases)” [97].

A more recent definition in the IEEE Standard Glossary of Software Engineering Ter-

minology (IEEE Std-91) described traceability as “(1) the degree to which a relationship

can be established between two or more products of the development process, and (2)

the degree to which each element in a software development process establishes its rea-

son for existing” [123]. In addition, in 2004, Spanoudakis and Zisman defined software

traceability as “the ability to relate artifacts created during the development of a software

system to describe the system from different perspectives and levels of abstraction with

each other” [231]. Other similar definitions can be found in [71, 110, 215].

In general, majority of the proposed definitions in the literature share the key elements

of artifact, traceability relation (link), and link direction. These elements can be described

as follows:

1.1.1 Artifact

An artifact is any atomic entity or element of a software system (e.g., a requirement

document, a design document, or a source code file) or even entities at lower granularity

levels (e.g., a requirement statement, a design component, or a code class or method) [215].

1.1.2 Relation

A traceability relation is any association that can be established between any two ar-

tifacts of a software system. Such relations, also known as links, can be one-to-one, one-
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to-many, or many-to-many (i.e., an artifact can be traced to several other artifacts, or two

artifacts can have more than one traceability link connecting them). Several traceability

relations have been identified in the literature [231], such relations can be described as

follows:

• Dependency: This relation refers to situations where the existence of a certain soft-
ware artifact depends on another artifact in the system. For instance, an implemen-
tation relation, where a certain source code module implements a certain functional
requirement, can be described as dependency relations.

• Generalization: Such relations are often used to describe complex and compound
structures in the system. For instance, if a certain artifact can be broken down into
multiple other artifacts at lower granularity levels (e.g., considering the individual
member functions of a class), or a set of artifacts can be combined into a single
artifact at higher level of abstraction (e.g., combining individual requirements to
produce a requirements document).

• Evolution: This particular relation describes the traceability between artifacts from
different releases of the system. The main objective of maintaining evolution rela-
tions is to keep track of changes in the system overtime.

• Satisfaction: A satisfaction traceability relation can be describes as follows: an arti-
fact ei satisfies another artifact ej if and only if ei complies with a condition imposed
by ej . For example, when a certain design case satisfies a certain condition imposed
by a certain requirement.

• Overlap: Two or more artifacts can be described as overlapping if they refer to,
describe, or implement a common concept or a feature of the system. For example,
if a certain test case is used to test two different features of the system then these two
features can be considered overlapping.

• Conflicting: Relations of this type capture potential conflicts in the system (e.g.,
conflicting specifications).

• Rationalization: These relations are used to describe the rationale behind the cre-
ation and evolution of certain artifacts. For instance, a rationalization relation can be
established between a test case and the specifications that led to this particular test.

• Contribution: Such relations are established to keep track of the origin of artifacts.
For instance, a certain feature is contributed by a certain stakeholder, or a certain
code module is developed, or being maintained by a certain software developer.
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1.1.3 Direction

Directionality of traceability links implies that such links should be established through-

out the system’s life cycle, linking artifacts in both forward and backward directions from

their origins at initial phases to their subsequent releases at later phases of the development

cycle and vice versa.

Based on this review, in this dissertation, we define traceability as “the ability to es-

tablish, record, and maintain relations among the various artifacts in a software system in

both forward and backward directions throughout the system’s life cycle”.

1.2 Why Traceability?

Establishing and maintaining traceability information is vital to several software en-

gineering activities such as program comprehension, Verification and Validation (V&V),

software reuse, feature location, impact analysis, reverse engineering, and many other ac-

tivities related to software maintenance and development. In what follows we describe

these applications and the potential benefits different traceability relations might provide

to support their operation.

1.2.1 Program Comprehension

Program comprehension is the task of understanding a software program. Compre-

hension is a cognitive process that starts with a hypothesis in mind. A bottom-up [205],

a top-down [30], or a combined strategy [155] is then used to verify that hypothesis. The

availability of traceability information among various software artifacts reduces the amount

of time required to comprehend the system. For instance, in top-down comprehension,
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traceability links start from the initial comprehension hypothesis, down to other system’s

artifacts, tracking down concepts that either confirm or refute the comprehension hypothe-

sis. In contrast, in the bottom-up strategy, starting from the system artifacts at lower gran-

ularity levels, traceability links are used to gradually increase the abstraction level until a

comprehension hypothesis or an understanding of the system is formulated [11, 58, 174].

1.2.2 Verification and Validation (V&V)

Verification and Validation V&V is the process of checking that a software system

meets its requirements [193]. Verification is concerned with building the product right,

from that perspective, traceability relations such as satisfiability, are used to establish the

confidence that work products meet the development standards at each phase. Validation,

on the other hand, is concerned with building the right product, in that sense, traceability

links such as dependency, provide a formal proof that the system actually implements the

desired set of requirements [121, 231] and ensure that test cases have been developed to

validate that all the requirements have been implemented [63, 249].

1.2.3 Software Reuse

Software Reuse is the process of creating software systems from existing software

rather than building them from scratch [33, 142]. Reuse is not limited to source code,

basically any part of a software system can be reused, such as specifications [125], test

data [162], and even design knowledge [251]. To that end, traceability information facili-

tates an effective reuse process by saving cognitive efforts while recognizing and retrieving

the set of potentially reusable components in the system [10, 88, 215, 250].
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1.2.4 Impact Analysis

Impact Analysis is a critical software activity that is concerned with understanding the

full extent of a proposed change request [14]. Tracking the impact of changes in a software

system is often described as time-consuming and error-prone process as a certain change

might affect several components of the system [158]. To assist in this process, traceability

links in the system are used to follow the ripple effect of a particular change [91]. In partic-

ular, identifying dependency relations among various system artifacts helps to interpret the

nature of the impact and assess its full effect [249]. For instance, changes can be modeled

as events that are propagated through traceability links according to a set of predefined

propagation rules to finds all potentially impacted components [213, 249].

1.3 Generating Traceability

Traceability is achieved in practice in various ways. In general, methods for establish-

ing and maintaining traceability can be classified, based on the level of automation they

adopt, into three main categories including: manual, semi-automatic, and fully automated

methods [215]. The following is a description of these categories in greater detail.

1.3.1 Manual Traceability

Under this approach, traceability links are established and maintained manually through

a Traceability Matrix (TM) that links various artifacts in the system. A simple TM can be

visualized as a table in which rows and columns represent the system’s artifacts. An entry

in the table indicates a traceability relation between the two artifacts at the row and column

ends of that entry. Table cells may include more information to convey other traceabil-
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ity attributes such as the type of the link and its direction. The process of building and

maintaining a TM manually can be described as follows:

• Link discovery: Refers to the process of identifying traceability links among various
artifacts in the system. This process starts from the initial phases of the development
process, such as establishing contribution links between requirements and stakehold-
ers during the requirements elicitation phase, and continues throughout the project’s
life cycle, including later phases of software testing and maintenance.

• Recording: Refers to storing or documenting traceability links. This process can be
handled using basic tool support such as a word processing tool or a spreadsheet.

• Maintenance: As software systems evolve overtime, their internal structure tend to
change, as a result, traceability links get outdated [153]. Therefore, analysts main-
taining a manual TM have to perform several maintenance tasks (e.g., adding, delet-
ing, and updating links) to reflect these changes in the system, thus making sure that
the system’s traceability links are up-to-date.

Several third-party requirement management tools are available to facilitate the manual

tracing process. Such tools (e.g., DOORS 1, RTM 2, RDT 3) depend on the availability

of traceable references in the system to generate traceability links. These references are

often implanted manually through a keyword assignment process. Under this process, a

developer intentionally leaves marks, or signs, that can be automatically translated into

traceability links. To help the tool follow these links, a glossary of these implanted signs is

usually provided. The tool then scans the text for these signs and generates the associated

tracks or links [98]. In addition, such tools provide several automated options for record-

ing, editing, and displaying links using various visualization and navigation techniques.

However, even with the automated support such tools provide, they are still considered

manual in the sense that they just follow manually assigned references.

1http://www-142.ibm.com/software/products/us/en/ratidoor/
2www.chipware.com
3http://www.ccs.neu.edu/home/home/lpb/mud-history.html
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Manual traceability represents a practical solution for relatively small systems. How-

ever, as software systems evolve over time, this process becomes labor-intensive, boring,

time-consuming, and error-prone [63, 97, 98, 121]. Therefore, an effective traceability is

rarely established manually in practice [44, 47, 216]. Motivated by these observations, re-

searchers have started looking for other methods that bring a degree of automation to the

process. The main assumption is that automating traceability should go beyond recording

and replaying traceability links to recovering and maintaining these links [75]. Following

is a description of these methods.

1.3.2 Semi-automated Traceability

To reduce the effort associated with the manual approach, semi-automated methods

exploit various techniques, such as execution traces and graph models, to derive traceability

information in a semi-automated manner. A plethora of such methods have been introduced

in the literature. Example of such methods include:

1.3.2.1 Rule-based Traceability (RBT)

This approach uses observations about the runtime behavior of the system to detect

associations among its functional scenarios and their executing code. In particular, trace-

ability links are captured from the data flow between the system’s modules in the form of

a footprint graph, where a footprint is the set of lines of code used to execute a certain

scenario. A set of rules are then used to reinterpret this graph to yield new traceability

information. Examples of such rules include (a) transitive reasoning, if there is a depen-

dency relation between artifacts A and B and a dependency relation between B and C, then
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there is a dependency relation between A and C, and (b) sharing of a common ground: a

traceability link exists between A and B if their implementations (code) overlap [72]. Other

rules can be found in [167, 232].

1.3.2.2 Process-driven Traceability (PDT)

Using PDT, traceability links are captured as a result of the software development. In

particular, a special purpose software is used to monitor the software development process

and capture traceability links which result from specific development activities [209]. Such

activities include creating, deleting, and modifying system artifacts in response to certain

code changes [67].

1.3.2.3 Event-based Traceability (EBT)

EBT establishes loosely coupled traceability links by using publish-subscribe relation-

ships between dependent objects in the system. In participial, under this approach, artifacts

in the system use an event server to subscribe to the requirements on which they are depen-

dent [108], when a change event (e.g., a requirement merge, replacement, refinement, or

abandonment) occurs an event notification message is published to all the subscribed de-

pendent objects. Therefore, ensuring that all these publish-subscribe relations (trace links)

are up-to-date or consistent with such changes. This type of traceability scheme is designed

to handle both long-term and short-term changes [44].
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1.3.2.4 Policy-based Traceability (PBT)

Such approach is used for automatically updating traceability links every time an ar-

chitecture or its code base evolves, where traceability links in the system are continuously

updated in response to changes. The specific update to be made is determined by an ac-

tively specified set of traceability management policies. These policies capture one small

behavior of traceability link evolution that matches potential actions that a user may take.

Such actions include checking in a new architectural artifact, or removing a source code

file. Execution of one policy can result in the triggering of one or more other policies, the

result is a set of closely collaborating policies that together are responsible for updating

traceability links. ArchTrace is an example of a tool that uses PBT [191].

Semi-automated methods help to save a considerable amount of effort that the man-

ual methods often require, however, they are still far from being practical. In particular,

most of the these methods need special preparation and constant monitoring throughout

the project’s life-cycle (e.g., installing required infrastructure such as a publish-subscribe

structure or a development monitoring tool). To overcome these limitations, a fully auto-

mated approach, based on the utilization of Information Retrieval (IR) methods has been

proposed. The following is a description of the IR-based automated tracing process.

1.3.3 Automatic Traceability

To overcome the limitations associated with manual and semi-automatic traceability

methods, modern requirements tracing tools employ IR methods to automatically generate

traceability links. These methods treat the problem as a standard IR problem. The basic
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tenet underlying IR-based tracing is that artifacts having a high textual similarity proba-

bly share several concepts, so they are likely good candidates to be traced from one an-

other [10]. Examples of IR methods that have been heavily investigated in the automated

tracing literature include: Vector Space Model (VSM) [121], Latent Semantic Indexing

(LSI) [178], and the Probabilistic Network Model (PN) [47].

The rational behind utilizing IR methods in software engineering tasks stems from

the fact that most of software artifacts have textual descriptions. For example, require-

ments are usually expressed in free text, and semi-formal languages are often used in

design documents and code identifiers and comments. IR methods analyze this textual

content in order to classify these artifacts’ as relevant or irrelevant to each other [104]. IR

methods have been used to support several software engineering tasks such as software

maintenance [26, 212], mining software repositories [128], program comprehension [41]

and code retrieval [165]. Similarly, in requirements engineering, IR methods are used for

reusable requirements retrieval [168], requirements discovery [25], and of course, require-

ments traceability [121].

The IR-based tracing process, which is also known as the automated tracing loop, con-

sists of four main steps. These steps, shown in Figure 1.1, can be described as follows:

• Corpus Building: A corpus is basically a collection of software artifacts. Artifacts in
the corpus represent the search space for the information retrieval method.

• Indexing: Indexing is the process of preparing artifacts in the corpus to be compatible
with the underlying retrieval model. The output of the process is a compact content
descriptor, or a profile, which is usually represented as a vector space model [169].

• Retrieval: IR methods are used to identify a set of traceability links by matching a
trace query’s profile with other artifacts’ profiles in the software repository. Based
on the specific IR method employed, links with similarity scores above a certain
threshold (cut-off) value are considered candidate links [121].
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Experimental Framework

• Presentation: Candidate traceability links are presented to the human analyst, usually
in a list form, for further validation. This process is known as vetting. Vetting, in
this context, refers to validating and approving the list of candidate links generated
by the tool [49, 56].

While the IR-based automated tracing process resembles, to a large extent, a standard

Web search problem, it has some key differences that makes it a stand-alone problem by

itself. These differences can be summarized as follows:

1.3.3.1 Search Space

The searchable space in tracing consist of individual software artifacts (e.g., require-

ments, classes, test cases, etc.). Such collection tend to be smaller than natural language

collections targeted in a typical Web search or online libraries search [69].
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1.3.3.2 Search Query

On the query side, a trace query is composed from the text of a requirement or other

software artifacts. They can often be relatively long and may also contain superfluous

information [69]. In Web search, a query size is much smaller with specific terms designed

specifically to match the user’s needs. In addition, a Web search session returns a list of

Web documents that best matches the user’s query, if the user is not satisfied with the

results, the query is altered and the results are regenerated. In traceability, the query is

static in the sense that it can not be directly altered by the user.

1.3.3.3 Search Results

Web search engines are often exploratory, which means users do not usually have spe-

cific answers for their queries, instead they look for answers that best satisfy their needs.

In traceability, a candidate link can be either true or false (e.g., either a particular code

module implements a certain requirement or not).

1.4 Research Problem, Objectives, and Plan

Despite major advances in the IR-based automated tracing research, traceability im-

plementation and use is still not pervasive in industry [96]. In fact, several studies have

investigated the performance of different IR-based tracing methods and techniques. Con-

verging evidence indicates that most of the exploited methods are equivalent in their per-

formance [1, 121, 172, 178, 199]. In general, IR-based traceability tools still suffer on the

accuracy side, and analysts working with such methods still have to spend a considerable

amount of time and effort verifying their output, thus, leading traceability to be dropped
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as a must-have activity in software development. These observations have motivated a

large body of research on automated tracing, with the objective of achieving performance

levels, that are adequate for practical applications [43, 47, 55, 96]. The ultimate goal is to

accomplish a successful technology transfer from research to industry.

Following this effort, in this dissertation we propose a set of performance enhancement

techniques to improve the overall operation of IR-based automated tracing tools. Our

main research objectives are to advance the stateoftheart in this field, and to add to the

incremental effort of achieving a successful deployment of traceability in practice [96].

Our contributions are based on careful analysis of the current state of research, and the

potential areas for improvement. In particular, our research plan can be described as a set

of incremental updates over the main phases of the conventional automated tracing process

(Figure 1.1), including indexing, retrieval, and presentation. In what follows we briefly

describe our research objectives for each of these phases.

1.4.1 Indexing

We start our investigation by looking at the first step of the automated tracing process,

known as artifacts indexing. Indexing is a standard, yet a crucial step, in which partial

and important information from system artifacts is converted into representations that are

compatible with the underlying IR model [89]. Even though indexing has been heavily

investigated in related IR fields, such as Web search and documents retrieval, there has

not been a thorough investigation of this process and its impact on the retrieval quality in

automated tracing literature. To fill this gap, in this dissertation we conduct an intensive
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investigation of the different aspects of the indexing process. Our objective is to describe

a feature diagram that captures the key components of the indexing process and their rela-

tionships in the domain of automated tracing [130]. Our findings are implemented through

an adaptive indexer which systematically adjusts indexing settings in such a way that en-

sures an efficient, yet effective, operation of the automated tracing process.

1.4.2 Retrieval

In this dissertation we investigate several issues related to the utilization of natural lan-

guage semantics in traceability link retrieval. In particular, several semantically-enabled IR

methods, which cover a wide spectrum of semantic relations, are implemented, calibrated,

and evaluated. Such methods include:

• Semantic augmented methods such as Part-of-Speech aware retrieval [34] and re-
trieval with thesaurus support [121].

• Latent semantic methods including Latent Semantic Indexing (LSI) [60] and Latent
Dirichlet Allocation (LDA) [28].

• Semantic relatedness methods including Explicit Semantic Analysis (ESA) [92] and
Normalized Google Distance (NGD) [40].

The main objective is to systematically and collectively evaluate the effectiveness of

such methods in supporting IR-based traceability. To that end, our contributions in this

domain include: identifying semantic features of software artifacts that have an influence

on traceability link retrieval, providing a set guidelines for using semantically-enabled IR

methods in requirement traceability tasks, including guidelines for implementing, evalu-

ating, and optimizing such methods, and describing methods for effectively integrating

semantics in automated tracing prototypes.
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1.4.3 Performance Enhancement

In this part of our research we experiment with several enhancement strategies, be-

yond the underlying retrieval mechanism, that might impact the overall performance of

automated tracing methods. In particular, our contribution in this domain include:

1.4.3.1 Cluster-based Retrieval

We propose a comprehensive analytical study to look at clustering, its operation, and

potential benefits in providing retrieval support for traceability tools. We base our research

hypothesis on the main cluster hypothesis which suggests that true positives and false pos-

itives tend to be grouped into high quality and low quality clusters respectively [175]. The

accuracy can then be enhanced by identifying and eliminating low quality clusters.

1.4.3.2 Refactoring Support

IR-based tracing methods track textual signs embedded in the system to establish rela-

tionships between software artifacts [96]. However, as software systems evolve, new and

inconsistent terminology finds its way into the system’s taxonomy, thus corrupting its lex-

ical structure and distorting its traceability tracks [153]. In our research, we argue that the

distorted lexical tracks of the system can be systematically re-established through refac-

toring, a set of behavior-preserving transformations for keeping the system quality under

control during evolution [86]. Our main objective is to improve the system lexical struc-

ture before indexing. To test this novel hypothesis, the effect of integrating various types of

refactoring on the performance of automated tracing methods is investigated. In particular,

we identify the problems of missing, misplaced, and duplicate signs in software artifacts,
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and then examine to what extent refactorings that restore, move, and remove textual infor-

mation overcome these problems respectively.

1.4.4 Presentation

Studying human analysts behavior in software engineering is a new research thrust [62,

119]. Building on a growing body of work in this area, in this dissertation we offer a

novel approach to understanding requirements analysts information seeking and gathering

behavior in a traceability environment. In particular, we try to answer various research

questions concerning the way analysts behave when verifying traceability links, and how

to improve such behavior in a principled manner. To answer our research questions, we

leverage information foraging optimality models to characterize a rational decision pro-

cess. Our objective is to offer concrete insights into the obstacles faced by requirements

analysts. These uncovered discrepancies allow us to define the behavioral problems that are

posed by the requirements tracing environment, and suggest multiple directions to advance

the fundamental understanding about information seeking in light of the adaptiveness of

human behavior.

Figure 1.2 summarizes our research contributions in this dissertation as a set of incre-

mental enhancements over the conventional automated tracing process (Figure 1.1).

1.5 Experimental Settings

IR-based traceability methods retrieve a large number of candidate traceability links in

response to each trace query. Some of these links are correct traces, while the majority are
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Potential Enhancements over the Conventional IR-based Tracing Process
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just false positives. Tracing tools are then assessed based on the quality of their output. To

illustrate this process, we use the following example.

Example: Assuming (UC1.2) is a use case that describes a functional requirement in

one of our experimental software systems. UC1.2 implementation is spread over 30 code

classes in the system. UC1.2 was traced against the software system using an IR-based

automated traceability tool. The tool retrieved 100 candidate traceability links for UC1.2.

Each one of these links represents a code class in the system. These links are usually

presented in a list format, arranged in an ascending order based on their similarity to the

trace query, where links with higher similarity scores appear at the top of the list. This list is

known as the candidate traceability matrix (TM). Furthermore, for browsability purposes,

the links in the list are usually presented over multiple pages.

Figure 1.3 shows the candidate TM of UC1.2. The list shows that the tool managed to

successfully retrieve 25 of the correct links of UC1.2. Gray boxes represent true positives

and white boxes are the false positives.

Multiple primary and secondary performance measures have been presented in the liter-

ature to assess the different aspects of IR-based tracing methods performance [238]. These

measures can be categorized into two main categories including quality and browsability

measures. Following is a description of these categorizes.

1.5.1 Primary Quality Measures

Precision (P), Recall (R), and F-measure are the standard IR metrics often used to as-

sess the quality of the different traceability tools and techniques. Recall measures coverage
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Figure 1.3

The Candidate TM (list of links) of UC1.2 Generated by the Tracing Tool

and is defined as the percentage of correct links that are retrieved, Precision measures ac-

curacy and is defined as the percentage of retrieved candidate links that are correct, and the

F-measure is the harmonic mean of recall and precision. Formally, if A is the set of correct

links and B is the set of retrieved candidate links, then recall, precision and the F-measure

can be defined as:

R (Recall) = |A ∩B|/|A| (1.1)

P (Precision) = |A ∩B|/|B| (1.2)

Fβ = (1 + β2) · (P ·R)/(β2 · P +R) (1.3)

It is important to point out here that automated tracing methods emphasize recall over

precision [121]. The main assumption is that commission errors (distracting false posi-

tives) are easier to deal with than omission errors (finding correct links that have not been
20
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retrieved e.g., false negatives). Based on that, F2 measure, which weights recall twice as

much as precision, is usually used. For instance, in the candidate TM in Figure 1.3, the

over all recall is 83%, precision is 25%, and F2 is 47%.

It is common in traceability research to present results over several cut-off points in

the list. These points are known as threshold levels. At each threshold level the preci-

sion and recall are calculated and the results are then presented in a recall and precision

diagram. Several strategies for calculating thresholds have been proposed in the litera-

ture [54]. These strategies include:

• Cut-off point: the top n links are considered.

• Cut-off percentage: the top k percent of the links in the ranked list is considered.

• Constant threshold: links with a similarity score to the query greater than a certain
value (λ) are considered.

• Scale threshold: threshold is computed as the percentage of the best similarity score
returned by the IR method.

In this dissertation we use a cut-off percentage to calculate our threshold. In particular,

precision and recall are reported at (< .1, .2, ..., 1 >) threshold values. A higher thresh-

old level indicates a larger list of candidate links, i.e. more links were considered in the

analysis [121]. Figure 1.4 shows the recall and precision diagram of the candidate TM in

Figure 1.3. Table 1.1 shows the number of links (No. Links), number of true positives (No.

TP), recall, precision, and F2 at each threshold level.

The diagram in Figure 1.4 shows the trade-off between precision and recall. At higher

threshold levels, where more links are considered in the analysis, more coverage is ex-

pected. However, more false positives are also retrieved which in turn affects the precision

negatively.
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Table 1.1

Quality Performance Measures at Different Threshold Levels

Threshold No. Links No. TP Recall Precision F2

.1 10 6 .2 .6 0.26

.2 20 11 .37 .55 0.41

.3 30 16 .53 .53 0.53

.4 40 19 .63 .48 0.57

.5 50 21 .7 .42 0.57

.6 60 23 .77 .38 0.58

.7 70 23 .77 .33 0.53

.8 80 24 .8 .6 0.51

.9 90 24 .8 .27 0.48
1 100 25 .83 .25 0.47
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Figure 1.4

Precision and Recall Diagram
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1.5.2 Browsability Measures

The second set of measures used in this dissertation are known as the browsability

measures. Browsability is the extent to which a presentation eases the effort for the ana-

lyst to navigate the candidate traceability links. For a tracing tool or a method that uses

a ranked list to present the results, it is important to not only retrieve the correct links

but also to present them properly. Being set-based measures, precision and recall do not

sufficiently capture information about the list browsability. To reflect such information,

other measures are usually used. Assuming h and d belong to sets of system artifacts

H = {h1, . . . , hn} and D = {d1, . . . , dm}. Let C be the set of true links connecting d and

h, L = {(d, h)|sim(d, h)} is a set of candidate traceability links between d and h gener-

ated by the IR-based tracing tool, where sim(d, h) is the similarity score between d and h.

LT is the subset of true positives (correct links) in L, a link in this subset is described as

(d,h). LF is the subset of false positives in L, a link in this subset is described using the

notion (d′, h′). Based on these definitions, secondary measures can be described as:

1.5.2.1 Average Precision (MAP)

MAP is a measure of quality across recall levels [15]. For each query, a cutoff point

is taken after each true link in the ranked list of candidate links. The precision is then

calculated. Correct links that were not retrieved (false negatives) are given a precision of

0. The precision values for each query are then averaged over all the relevant links (true

positives) in the answer set of that query (|C|), producing Average Precision (AP). The

Mean Average Precision (MAP) is calculated as the average of AP for all queries in each
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dataset [241]. MAP gives an indication of the order in which the returned documents are

presented. For instance, if two IR methods retrieved the same number of correct links

(same recall), then the method that places more true links toward the top of the list will

have a higher MAP. Eq.4 describes MAP, assuming the dataset has Q traceability queries.

MAP =
1

|Q|

|Q|∑
j=1

1

|Cj|

|LTj
|∑

k=1

Precision(LTjk ) (1.4)

1.5.2.2 DiffAR

Measures the contrast of the list. It can be described as the difference between the

average similarity of true positives and false positives in a ranked list. A list with higher

DiffAR has a clearer distinction between its correct and incorrect links, hence, is consid-

ered superior. Eq. 1.5 describes DiffAR.

DiffAR =

∑|LT |
i=1 sim(hi, di)

|LT |
−
∑|LF |
j=1 sim(h′j, d

′
j)

|LF |
(1.5)

1.5.2.3 Lag

The average of the number of false positives with higher similarity score that precede

each true positive in the ranked list. In other words, the average number of incorrect links

that appears before each correct link in the list. Eq. 1.6 shows Lag.

Lag =

∑|LT |
i=1 Lag(hi, di)

|LT |
(1.6)

Lag gives an indication of how separated true positives from false positives in a list. A

higher lag means that true links are scattered all over the list, which is a sign of poor

performance. For the list in Figure 1.3, Lag = 15.28.
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1.5.3 Datasets

We use several datasets to conduct our experimental analysis in this dissertation. These

datasets have been used in several traceability studies as a benchmark for assessment

(e.g., [56, 121, 199]). Following is a description of these datasets and their application

domains. Table 1.2 summarizes the characteristics of our experimental datasets. The table

shows the size of the system in terms of lines of source code (sLOC), lines of comments

(cLOC), type of traceability links, contributor of each dataset, and the application domain.

Table 1.2

Experimental Datasets

Dataset sLOC cLOC Links Type Contributor Domain
iTrust 18.3K 6.3K 314 requirement-to-code NCSU Health care
eTour 17.5K 7.5K 394 requirement-to-code UNISA Tourism
CM-1 20K N/A 361 requirement-to-design NASA Instrumentation

MODES 20K N/A 41 requirement-to-requirement NASA Instrumentation
WDS 44.6K 10.7K 229 requirement-to-code Industrial Partner Job search

1.5.3.1 iTrust

A medical application, developed by software engineering students at North Carolina

State University (USA). It provides patients with a means to keep up with their medical

history and records and to communicate with their doctors. The system is written in java

with approximately 18.3K lines of code. The dataset has 38 requirements and 266 source

code files, with 314 requirements-to-source code links.
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1.5.3.2 eTour

An electronic tourist guide application developed by final year students at the Univer-

sity of Salerno (Italy). eTour was selected as experimental object because its source code

contains a combination of English and Italian words, which is considered an extreme case

of vocabulary mismatch. The system is written in java with approximately 17.5K lines of

code. The dataset has 58 requirements and 166 source code files. The dataset contains 394

requirements-to-source code links.

1.5.3.3 CM-1

Consists of a complete requirements (high-level) document and a complete design

(low-level) document for a NASA scientific instrument. The project source code was writ-

ten in C with approximately 20K lines of code. It has 235 high-level requirements and

220 design elements. The traceability matrix contains 361 actual requirements-to-design

traces.

1.5.3.4 MODIS

A dataset that has been constructed from two publically available high-level require-

ments and low-level requirements documents for NASAs Moderate Resolution Imaging

Spectrometer (MODIS). The dataset contains 19 high-level and 49 lowlevel elements with

41 requirement-to-requirement. A typical requirement (high or low-level) is one to two

sentences in length.
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1.5.3.5 WDS

A proprietary software-intensive platform that provides technological solutions for ser-

vice delivery and workforce development in a specific region of the United States. In order

to honor confidentiality agreements, we use the pseudonym WDS to refer to the system.

WDS has been deployed for almost a decade. The system is developed in java and current

version has 521 source code files, with 229 requirements-to-source code links, linking a

subset of 26 requirements to their implementation.

1.6 Dissertation Outline

The rest of this dissertation is organized as follows:

• Chapter 2: Automatic indexing

• Chapter 3: The role of semantics in automated tracing.

• Chapter 4: Enhancing candidate link generation using clustering.

• Chapter 5: Supporting artifacts indexing through refactoring.

• Chapter 6: On human analyst performance and tool support

• Chapter 7: Concludes the dissertation and suggests venues of future work
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CHAPTER 2

INDEXING

Documents indexing is defined as the task of assigning terms to documents for retrieval

purposes [89]. This process consists of two generic steps: extracting the subject matter

of a document, and expressing that subject matter in index terms to facilitate subject re-

trieval [173]. Search engines, which search large repositories of textual documents such as

digital libraries or the Web, rely heavily on indexing to increase their retrieval efficiency

and effectiveness. In software engineering, indexing is used to convert software artifacts

into more compact forms known as profiles. A profile is a short-form description of an

artifact, is easier to manipulate than the entire artifact, and plays the role of a surrogate at

the retrieval stage [166].

In this chapter, we investigate software artifacts indexing for automated tracing. In par-

ticular, we experimentally identify the main aspects of the indexing process, and present

these aspects in a feature diagram [130]. A feature diagram captures the common and vari-

able components of a certain domain and their dependencies, and organizes such knowl-

edge in a tree-like structure. Our main research question in this chapter is: Which aspects

of the indexing process have a statistically significant impact on IR-based traceability link

recovery?
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2.1 Software Artifacts Indexing

Several methods have been proposed in the Natural Language Processing (NLP) litera-

ture for indexing documents expressed in free text [221]. However, the restricted nature of

languages used in software development limits the ability of such generalized NLP index-

ing techniques to perform well when applied to software artifacts. In particular, software

artifacts contain a mixture of languages at different levels of formality. Some artifacts

(e.g., requirements documentation and manuals) are usually expressed in natural language,

while other software artifacts (e.g., design and specifications documents and source code)

are expressed in formal languages with some descriptive free text such as code comments.

Therefore, indexing software artifacts tends to be less straight forward than indexing free

text as these factors have to be taken into consideration.

In our research we focus on source code indexing. Source code represents an extreme

case of formal software artifacts, in which code files have a mixture of text at different

levels of formality (e.g., comments, code messages, and code identifiers). In particular,

source code exhibits certain characteristics that make its indexing a challenging task. Such

characteristics include:

• Formality: Source code is highly structured. Developers have to follow strict syn-
tactic rules in order to produce a working code.

• Naming style: There is no guarantee that developers will use genuine words in their
code, or follow a well-defined naming convention throughout the project’s life cycle.
In most cases, developers use combinations of words and abbreviations to name their
identifiers [9, 23, 152].

• Reserved words: The majority of the taxonomy in source code are reserved words
related to the programming language being used. These words have no direct relation
to the application domain.
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• Comments: Comments are usually expressed in natural language and have a differ-
ent lexical structure from source code, thus comments need to be processed sepa-
rately [248].

2.2 Source Code Indexing

The source code indexing process can be described as a multi-step process. This pro-

cess starts by extracting textual content (e.g., comments, code identifiers, requirements

text) from input artifacts. Lexical processing, stop-words removal, and stemming are then

applied to reduce words to their roots. In what follows we describe the main steps of this

process in greater detail.

2.2.1 Information Extraction

Domain knowledge and code concepts are embedded in the linguistic aspects of source

code, including identifiers names, error messages, and comments [9,152,179,188]. Source

code identifiers, such as names of classes, attributes, methods, and parameters, often cap-

ture the developers cognitive perception (understanding) of the application domain. The

underlying assumption is that developers name their identifiers in such a way that is related

to the functionality of their code, and not completely at random [166]. For example, an

identifier named user id is expected to hold a user’s identification information.

The other source of knowledge in source code is the comments. Comments serve as

the internal documentation of the system. In the literature, the utilization of comments in

source code indexing has generated some debate. The argument that supports using com-

ments is based on the fact that programmers, under the pressure of approaching deadlines,

tend to focus on the functionality of the code with only little attention paid to its style, thus
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there is no guarantee that the naming style used by the developers will be good enough

to capture the domain concepts. However, comments are commonly written in a language

similar to that of the external documentation [229,239,248], and developers often use com-

ments to explain and communicate their code. Therefore, comments are expected to carry

valuable information that should not go to waste [166, 178].

Argument against using comments is also supported by several observations. For in-

stance, not all software systems contain comments, quality of comments and their levels

of abstraction vary widely among software systems, and comments might be outdated or

even redundant to the source code [10, 133]. For instance, in the following line of code,

comments add no value to the code concept:

Increment++; //incrementing by 1

2.2.2 Lexical Analysis

Lexical analysis is used to extract meaningful words from extracted tokens. A token is

defined to be any alphabetical sequence of characters separated by non-alphabetical char-

acters or by letter capitalization [247]. It is a common practice to define identifiers by con-

catenating two or more words [10]. Such identifiers can be broken down into units based on

commonly used coding standards, such as the location of the capital letter in the identifier

name (firstName → first name) or any other separators such as the underscore ( ) char-

acter. Abbreviations are also commonly used by programmers to name identifiers [151].

Domain specific dictionaries or lookup tables can be used to expand abbreviations to their

constituent words. For example:
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hsptlRcrd→ hsptl rcrd→ hospital record

2.2.3 Filtering

The main objective of indexing in IR is to generate a set of index terms that achieve

the best performance with IR methods. Stopwords are any words that are irrelevant to the

code concept. Such words carry a very low information value and can affect the retrieval

process negatively [175]. We identify four categories of stopwords that are usually filtered

out of the code profiles. These categories include:

• Generic stopwords: Stopwords that are used in natural language, such as (and, but,
the). A list of the most common stopwords in English is available at [87].

• Programming language reserved words: The set of keywords reserved by the pro-
gramming language, such as (integer, string, class, static).

• Non-textual tokens: Set of language operators and special characters which are used
to perform certain arithmetic operations such as (+,-, %, @).

• Other stopwords: Often found in comments that are used throughout the project as
references (e.g., author information or license terms). Such comments usually appear
in all system files, and often add no distinctive value to the retrieval process and can
be removed.

2.2.4 Stemming

Stemming is the process of reducing a word to its root. This process can be accom-

plished using techniques such as rule-based and dictionary-based stemming. Rule-based

stemming uses a large number of language-specific rules to reduce words to their canonical

morphological representations. Porter’s algorithm [211] is one of the most used rule-based

stemmers in IR research. Rule-based stemming is simple to implement and maintain, and

has a modest computational cost. However, its quality depends highly on the set of rules ap-

plied. In addition, its performance may downgrade when dealing with irregular cases such
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as eat and ate. To overcome this problem, a dictionary-based approach is sometimes used.

This approach mainly involves maintaining known morphological word roots that exist as

real words in a lookup table. Krovetzs stemmer [141] is an example of a dictionary-based

English stemmer where potential root forms are contained in the dictionary.

Stemming has been found to improve the effectiveness and the efficiency of the retrieval

system [175]. However, this improvement in the performance does not come without a risk.

In particular, it has been observed that as words get stemmed, they lose an important part of

their meaning [175]. This risk becomes more obvious in free text retrieval, where different

parts of speech carry different information values to the retrieval engine. For instance, it

has been reported that nouns and verbs are better discriminators, or more descriptive, to

the content of a document than other parts of speech [39, 78].

2.3 A Feature Diagram for Source Code Indexing

A feature diagram is a hierarchy of common and variable features characterizing the set

of instances within a domain. It helps in determining the scope of the domain and provides

an external view that stakeholders can understand and communicate easily [130]. The

analysis in this chapter is concerned with identifying the variabilities and commonalities

in the source code indexing domain. In particular, our main objective is to develop a

feature diagram for source code indexing to support knowledge management and reuse in

the domain of IR-based automated tracing.

Figure 2.1 depicts a feature diagram we use as a basis for our discussion. It is important

to note that we do not aim for this domain characterization to be immune from change.

33



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

Source code indexing 

Information extraction 

Non linguistic  

Code identifiers Comments 

Linguistic 

Code structure OO Relations 

Filtering 

Linguistic Reserve Non-Textual Other

Optional 

Mandatory 
 

Feature 

Example 

XOR 

Lexical analysis 

Splitting Abbreviation Stemming 

Rule based Dictionary based 

Porter Krovetz 

Figure 2.1

A Feature Diagram for the Source Code Indexing Process
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In fact, we expect this knowledge representation to evolve as our understanding of the

indexing process matures.

The experiment we describe in the next section is an attempt to further our under-

standing empirically. Our main goal here is to show the vast range of available choices as

represented by the current code indexing approaches from a reuse perspective. Figure 2.1

follows the notations defined in [130]. The features (denoted by the boxes) of the concept

source code indexing are described, which is located at the top of the feature diagram.

The boxes directly connected to source code indexing are the direct sub-features or sub-

steps. The little circles at the edges connecting the features define the semantics of the

edge. A filled circle means mandatory, thus every code indexing shall perform information

extraction, lexical analysis, and filtering. However, since the utilization of comments and

stemming in the indexing process have generated some debate in the literature, they are

identified as optional features currently (denoted by the outlined circle at the edge). Alter-

native features indicate an exclusive-or (XOR) choice, so when stemming is performed in

practice, a rule-based or a dictionary-based stemmer could be used.

2.4 Experimental Analysis

Experimentally validating all the features in a feature diagram and identifying all their

possible dependencies can be tedious [106]. In our experiment, we chose comments and

stemming as our independent variables as they are marked as optional features in the feature

diagram in Figure 2.1. Our research questions are: Should comments be considered when

tracing source code? And is stemming required?. To answer these questions, we identify
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four experimental settings with all the possible comments and stemming combinations.

We control the rest of the features shown in Figure 2.1 to void their effect. These settings,

summarized in Table 2.1, can described as follows:

• Base case analysis (C): The base case in our experiment includes indexing source
code only. Code identifiers are extracted and lexically processed, stopwords are
filtered out, no comments are considered and no stemming is performed. This case
represents a reference point for comparing other cases performance.

• Stemming the source code (CS): To investigate the effect of stemming on source
code traceability, all source code profiles generated in the base case are stemmed
using Porter’s algorithm [211].

• Considering comments (CC): In this case, source code in is indexed with comments.
The comments, in addition to code identifiers, are extracted and lexically processed.
All irrelevant stopwords are removed and no stemming is performed.

• Stemming comments (CCS): In this case, all CC profiles from the previous case are
stemmed using Porter’s algorithm.

Table 2.1

Experiment Settings

Case Code Comments Stemming Lexical Analysis Filtering
C

√
× ×

√ √

CS
√ √

×
√ √

CC
√

×
√ √ √

CCS
√ √ √ √ √

The independent variables in our experiment are comments and stemming. We use

Porter’s stemmer [211] for its computational efficiency. We also use the stop words list

available in [87] to filter out unnecessary words. Our dependent variable is the quality
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of the generated requirements-to-code traceability matrix. We use precision and recall to

assess the quality after applying the different treatments listed in Table 2.1.

We use three requirements-to-code datasets from our dataset collection to carry out

our experiment. These datasets include iTrust, eTour, and WDS. We use standard Vector

Space Model (VSM) with TFIDF weights as our traceability method. Using VSM, each

document is represented as a set of terms T = {t1, ..., tn}. Each term ti in the set T is

assigned a weight wi. The terms in T are regarded as the coordinate axes in N-dimensional

coordinate system, and the term weights W = {w1, ..., wn} are the corresponding values.

Thus, if q and d are two artifacts represented in the vector space, then their similarity is

measured as the cosine of the angle between them (Eq. 2.1):

Sim(q, d) =

∑
qi · di√∑
q2
i ·
∑
d2
i

(2.1)

where qi and di are real numbers standing for the weights of term i in q and d respectively.

Word counts, or term frequencies in documents are often used to assign weights to terms in

the document’s vector. While this method is computationally efficient, it might represent

a bias towards long text documents or frequent words in the corpus. To mitigate this

risk, another weighting scheme based on term frequency and inverse document frequency

(TFIDF) is used. Using this approach, qi and di in Eq. 1 become qi = tfi(q) · idfi

and di = tfi(d) · idfi, where tfi(q) and tfi(d) are the frequencies of term i in q and d

respectively. idfi is the inverse document frequency, and is computed as idfi = log2(t/dfi),

where t is the total number of artifacts in the corpus, and dfi is the number of artifacts in

which term i occurs. TFIDF determines how relevant a given word is in a particular
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document. Words that are common in a single or a small group of documents tend to

have higher TFIDF, while terms that are common in all documents such as articles and

prepositions get lower TFIDF values. A higher TFIDF implies a stronger relationship

between the term and the document it appears in, thus if that term were to appear in a

query, the document would probably be a correct match.

A prototype is created to carry out the experimental analysis. This prototype has two

main functions: a code indexer and a requirements-to-code tracer. The code indexer uses

regular expressions to match and capture identifiers and comments in a source code file, an

implementation of Porter’s algorithm is used to perform stemming, and generic and pro-

gramming language specific stopwords lists are provided to filter out irrelevant terms. The

prototype also has a control panel to allow the user to control the settings of the indexing

process, such as whether to include comments or to do stemming. After performing in-

dexing, all the generated profiles are stored in the artifacts database to be used later in the

tracing process. For each dataset, we trace all the requirements (use cases) to code classes

under different settings. The answer sets of our datasets are used to evaluate the quality of

the automatically generated traceability links under the different experimental settings.

2.5 Results and Discussion

Analysis results for both of our datasets are shown in Table 2.2 and Figure 2.2. Standard

recall and precision diagrams are used to report the results. Wilcoxon Signed Ranks test is

used to assess the effect of the different experimental treatments. This is a non-parametric

statistical hypothesis test used to compare two related samples, or repeated measurements
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on a single sample, where the null hypothesis is that the median difference between pairs

of observations is zero. Wilcoxon test makes no assumptions about the distribution of the

data [65, 237], which makes it appropriate for testing our hypothesis. We use α = 0.05 to

test the significance of the results.

Table 2.2

Wilcoxon Signed Ranks Test Results (p-values at α = .05)

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision

(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

C x CS (.000, 1.000) (-1.461, .144) (-.510, .610) (-.730, .465 ) (-.510, .610) (-1.000, .317)

CS x CC (-2.497, .013) (-2.803, <.01) (-2.308, .021) (-2.803, <.01) (-2.308, .021) (-2.803, <.01)

CC x CCS (-2.803, <.01) (-2.023, .063) (-1.656, .098) (-1.095, .273) (-2.549, .011) (-1.732, .083)

To assess the effect of indexing comments on the performance, all requirements in all

datasets are traced to the CC profiles. The performance, in terms of recall and precision, is

compared to the base case performance (C), where no comments are considered. Analysis

results show that in all three datasets, the recall and precision improve significantly after

considering comments (Table 2.2). This confirms our speculations that comments carry

a considerable amount of the domain knowledge, thus they should be considered as a

valuable source of information when indexing source code.

To test the effect of stemming on the performance, we initially compare the perfor-

mance of the base-case (C), where no stemming is performed over source code, to the

second case where source code is stemmed (CS). The Wilcoxon test results show no sig-
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Precision and Recall Data for our Experimental Datasets
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nificant difference in the performance in all three datasets in terms of recall or precision

(CS = C). This leads to the conclusion that if only source code is considered in the indexing

process, then no stemming is required.

In the second case, comments are stemmed (CCS). The results are compared to the

unstemmed comments case (CC). Analysis shows that applying stemming on comments

improves the recall significantly in iTrust and WDS. However, no significant improvement

is detected in eTour. In terms of precision, the average precision shows no significant

improvement in any of our datasets. In fact, in all three datasets, the precision has actually

declined, however this decline was statistically insignificant. This negative effect on the

precision can be explained based on the fact that stemming causes loss of information

when reducing words to their roots [140], which results in retrieving more irrelevant links.

For example, the tenses of verbs may be lost in creating a stem. Therefore, when tracing

requirements, where verbs carry the highest information value [194], this could lead to a

decline in the accuracy.

To further confirm these findings, we observed the percentage of terms affected by

stemming in both datasets. Results are shown in Table 2.3 which shows that the percent-

age of terms that were affected by stemming in source code where considerably less than

comments. This can be explained based on the fact that developers often do not use a

fancy language in naming their identifiers, instead they usually stick to the base form of

the word, which limits the effect of stemming when applied to source code [9, 23, 152].

However, comments are usually written in natural language and in complete sentences,

thus stemming had more obvious impact on comments, and consequently retrieval quality.
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In addition, the insignificant effect of comments stemming on recall in eTour can be ex-

plained based on the fact that this particular dataset includes a mix of Italian and English

keywords, which limits the operation of our English-Language stemmer (only 4.2% of the

comments keywords in this dataset are affected by stemming).

Table 2.3

Percentage of Terms Affected by Stemming in all Datasets

iTrust eTour WDS

Comments terms 15% 4.2% 23%
Source code terms 3.3% 1.2% 4.7%

Overall, the experimental analysis results shows that when stemming is applied to com-

ments, it improves the recall significantly. However, if only the code is to be used (for

example in cases where the code is not commented), then stemming is unnecessary. There-

fore, in the feature diagram in Figure 2.1, comments will be included as a feature in the

code indexing process. In addition, we would still keep stemming as an optional feature.

However, we would add a requires dependency link from comments to stemming. This

indicates that if comments are considered, then stemming is required.

2.6 Threats to Validity

Several factors can affect the validity of our experiment. Construct validity is the de-

gree to which the variables accurately measure the concepts they purport to measure [59].

In our experiment, we feel that the independent variables (comments and stemming) and
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dependent variables (precision and recall) accurately measure the concepts they purport to

measure including variabilities in the code indexing process for the independent variables,

and quality of automatically generated traceability links for the dependent variables.

Threats to external validity impact the generalizability of results. In particular, the re-

sults of this study might not generalize beyond the underlying experimental settings [59].

However, several strategies are used in our experiment to help mitigate these threats. For

instance, we choose a representative stemmer and stopword lists in our analysis. In addi-

tion, we experiment using midsize datasets, from different domains, and find converging

results. This helps generalize our findings to other application domains. However, both

eTour and iTrust were developed by university students and may not be representative of

a program written by industrial professionals. It is therefore unknown if the results will

generalize to other software systems, other application domains, or larger systems.

2.7 Conclusions

In this chapter, we have tackled the problem of indexing source code for supporting

requirements-to-source-code traceability. We introduced a feature diagram to describe the

indexing process, and conducted an experiment using three datasets including WDS, eTour,

and iTrust, to examine some of the diagram’s features and their dependencies. Results

showed that considering comments in the indexing process improved the quality of the

generated traceability links significantly. Stemming was also found useful when comments

were considered. However, if comments were ignored then the overhead of stemming is

unnecessary.
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Our findings in this chapter emphasize the importance of adopting a good naming con-

vention in software systems. Meaningless names or abbreviations often lead to a vocabu-

lary mismatch between requirements and source code, which often leads to a considerable

drop in the retrieval accuracy. Our findings also emphasize the importance of considering

comments in indexing. Commented code is not only more understandable, but also easier

to be traced.
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CHAPTER 3

SEMANTICS IN AUTOMATED TRACING

This chapter investigates the potential benefits of utilizing natural language semantics

in automated traceability link retrieval. In particular, we evaluate the performance of a

wide spectrum of semantically-enabled IR methods in capturing and presenting traceabil-

ity links in software systems. Our objectives are to gain more operational insights into

these methods, and to provide practical guidelines for the design and development of ef-

fective requirements tracing and management tools. To achieve our research objectives, we

conduct an experimental analysis using three datasets from various application domains.

Results show that considering more semantic relations in traceability link retrieval does not

necessarily lead to higher quality results. Instead, a more focused semantic support, that

targets specific semantic relations, is expected to have a greater impact on the overall per-

formance of tracing tools. In addition, our analysis shows that explicit semantic methods,

that exploit local or domain-specific sources of knowledge, often achieve a more satisfac-

tory performance than latent methods, or methods that derive semantics from external or

general-purpose knowledge sources.
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3.1 Introduction

The tenet underlying IR-based tracing methods is that artifacts having a high textual

similarity probably share several concepts, so they are likely good candidates to be traced

from one another [12]. The main assumption is that practitioners use consistent terminol-

ogy throughout the project’s lifecycle. These terms serve as signs that can be traced to

produce meaningful tracks in the system [96]. In other words, IR methods assume that the

same words are used whenever a particular concept is described [18]. However, extensive

research in static code analysis shows that as projects evolve, new and inconsistent termi-

nology finds its way into the system’s taxonomy. This textual gap in the system grows

gradually to a case where different system’s artifacts have information contents with a

large degree of variance from each other [9, 23]. This problem is known as the vocabulary

mismatch problem, and is regarded as one of the principal causes of poor performance in

retrieval engines [90].

In an attempt to alleviate the problem of vocabulary mismatch, researchers have started

investigating semantically-enabled IR techniques that look beyond the lexical structure

of software artifacts. Unlike lexical methods, which deal with text as strings of tokens,

semantic methods capture similarity among various artifacts by exploiting the semantic

knowledge embedded in their contents. In requirements engineering, several semantically

enabled methods have been exploited to support various related tasks such as, requirements

discovery, analysis, modeling, traceability, and reuse [25, 117, 135, 168, 194]. The under-

lying assumption is that the overwhelming majority of requirements are written in natural

language (NL) [164,198]. Therefore, IR methods that exploit semantics in the NL compo-
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nent of software artifacts should be able to discover dimensions that lexical methods often

overlook [116].

It is important at this point of our analysis to distinguish between two kinds of se-

mantics: programming language semantics, which refer to the meaning of a program as

a state transformer from inputs to outputs, and natural language semantics, which refer to

the meaning inherent in the natural language component of artifacts, such as code identi-

fiers’ names and comments [23]. In this chapter, the latter is our concern. In particular,

the analysis in this chapter addresses several research questions related to the utilization

of semantics in traceability link retrieval. Such questions include, how much semantics is

needed? What specific effects does semantics have on the performance? What are the mer-

its of different semantic enhancements? And what is the scope of applicability of different

methods? Our work not only advances the fundamental understanding about the role of se-

mantics in supporting automated tracing, but also enables principled ways to increase the

practicality of requirements tracing and management tools. In particular, the contributions

of this chapter are:

• A comprehensive statistical analysis of the merits of a wide spectrum of semantically-
enabled IR methods in identifying and capturing traceability links in software sys-
tems.

• A systematic categorization of different semantically-enabled IR methods based on
their internal operation, the semantic relations they target, and scope of application.

• A set of guidelines for using semantically-enabled IR methods in requirements trace-
ability tasks, including guidelines for optimizing, evaluating, and implementing such
methods.

To achieve our research objectives, we analyze the performance of a plethora of semantically-

enabled IR methods using three datasets from various application domains. These meth-
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ods include basic Vector Space Model (VSM) [222], VSM with thesaurus support (VSM-

T) [121], Part-of-Speech enabled VSM (VSM-POS) [34], Latent Semantic Indexing (LSI)

[60], Latent Dirichlet Allocation (LDA) [28], Explicit Semantic Analysis (ESA) [92], and

Normalized Google Distance (NGD) [40]. Following is a description of these methods.

3.2 Semantically-Enabled IR

In our analysis, we experiment with various semantically-enabled IR methods that are

based on the algebraic vector space model (VSM). Such methods transform textual docu-

ments into more compact representations in the form of vectors. These vectors can hold

various types of information, representing different aspects of the semantic knowledge

embedded in a text corpus (e.g., words counts in artifacts or latent topical structures in a

corpus [28]). Once the vector representation of a document is generated, a simple similar-

ity measure (e.g., the cosine-distance [258]) can be used to calculate the similarity between

these vectors, thus determining the relevance of documents.

Based on the underlying IR model used, we identify three categories of VSM-based

semantically-enabled IR methods. These categories include semantic-augmented, latent

semantic, and semantic relatedness methods. In what follows, we describe each of these

categories, its main methods, and their applications in greater detail.

3.2.1 Vector Space Model

We use Vector space model (VSM) with TFIDF weights as an experimental baseline in

our analysis. A full description of VSM is available in (Section 2.4). Due to its conceptual

and mathematical simplicity, basic VSM has gained a considerable popularity in informa-
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tion retrieval research [25]. However, this over simplification often comes with several

limitations. For instance, the bag-of-words assumption assumes term-independence. This

assumption discards the punctuation information and the words ordering. However, since

there are strong inherent associations between terms in a language, this assumption is never

satisfied [258]. This often results in loss of information and ambiguity problems as texts

should ideally be compared at their topic level, and not based on the specific words that

were chosen to express these topics [143].

3.2.2 Semantic-Augmented Methods

This category includes IR methods that semantically augment the basic VSM by adding

new information to the basic document’s vector, thus integrating additional evidence into

retrieval. We identify two methods under this category, including Vector Space Model with

thesaurus support (VSM-T) and Vector Space Model with Part-of-Speech tagging (VSM-

POS). Both methods have been investigated before in automated tracing research [34,121].

Following is a description of these methods in greater detail.

3.2.2.1 Vector Space Model with Thesaurus Support

A very common occurring semantic relation in software artifacts is synonymy, or equiv-

alent words. As mentioned earlier, as software projects evolve, developers tend to use

different vocabulary, including abbreviations and acronyms, to refer to certain domain

concepts [9, 61]. Basic VSM fails to capture these relations as it assumes terms’ inde-

pendence. A simple way to overcome this problem is to equip VSM with a dictionary or

a thesaurus that keeps track of such relations (e.g., different acronyms used to describe a
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certain concept). Documents are then matched based on their matching keywords, as well

as synonymy relations found in the supporting thesaurus.

The integration of a thesaurus into VSM is relatively simple. For each pair of syn-

onyms identified (si, sj), a perceived similarity coefficient αij can be assigned to indicate

their equivalence [121]. For each document in the corpus, document vectors are expanded

based on these synonym pairs. A similarity coefficient of αij < 1 is usually assigned to

distinguish a synonymy match from an exact match (αij = 1). The similarity between two

documents can then be calculated as:

s(q, d) =

∑
qidi +

∑
(ki,kj ,αij)∈T αij(qidj + djqi)√∑

q2
i .
∑
d2
i

(3.1)

Based on the type of the integrated thesaurus, two methods of VSM-T can be distin-

guished under this category including VSM with general purpose thesaurus (VSM-T-WN)

and VSM with domain specific thesaurus (VSM-T-DT). VSM-T-WN method uses general

purpose dictionaries, such as WORDNET, to derive synonyms. WORDNET, introduced and

maintained by the Cognitive Science Laboratory of Princeton University, is a large lexical

database of English verbs, nouns, and adjectives, grouped into sets of cognitive synonyms,

known as synsets [82]. The main advantage of general purpose dictionaries is their high

coverage of terms, and the fact that they are constantly being maintained by highly trained

linguists. However, with no domain-specific knowledge (context), relying on a general

purpose thesaurus to handle abbreviations and acronyms in a software system can become

a challenge.
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VSM-T-DT methods use a domain-specific thesaurus to handle synonym pairs derived

from the project domain’s taxonomy. These domain-specific thesauri can deal with cases

such as acronyms and abbreviations. However, they can become quickly out-of-date, as

keeping track of the changes in the project’s vocabulary over time can become an exhaus-

tive task.

3.2.2.2 Vector Space Model with Part-of-Speech Tagging

Part of speech (POS) refers to the syntactic role of terms in written text (e.g., nouns,

verbs, adjectives). Research in natural language processing (NLP) has revealed that some

parts of speech carry more information value than others. For instance, it has been reported

that nouns and verbs are better discriminators, or more descriptive, to the content of a doc-

ument than other parts of speech [39,78]. These observations have been recently integrated

into the IR paradigm. The main assumption is that, favoring certain parts of speech over

treating all terms at the same level of importance should improve the overall accuracy of

retrieval engines [160, 204, 217].

We build upon these observations to derive a VSM model with Part-of-Speech tagging

support (VSM-POS) for traceability link retrieval. To calculate the similarity between two

artifacts in the system (q and d), initially POS analysis is conducted to identify different

parts of speech (e.g. verbs and nouns) in q and d. This process can be achieved using var-

ious text tagging tools such as TreeTagger [224]. Only terms which belong to a particular

part of speech are then considered in retrieval.
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In this chapter we only consider the two linguistic forms of verbs (VSM-POS-V) and

nouns (VSM-POS-N) in building term vectors of software artifacts. These two particular

parts of speech have been found to carry higher information values than other parts, captur-

ing main actions and objects in software artifacts [79, 127, 168, 228]. Therefore, indexing

based on these two linguistic forms is expected to filter out noise resulting from keywords

that do not contribute to the artifact’s topic.

Limitations of methods based on POS often stem from the complications associated

with text tagging, or automatically identifying different parts of speech in a text. While

generating linguistic parse trees can be relatively simple for artifacts expressed in natural

language (e.g., requirements documents), this process can become more complicated for

semi-formal or formal artifacts, such as source code or design documents [2, 24]. In ad-

dition, selecting an optimal linguistic form or a combination of forms that best achieves

desired performance levels can be computationally exhaustive [160].

3.2.3 Latent-Semantic Methods

While semantic-augmented methods help to exploit basic semantic aspects of artifacts,

they reveal a little about the inter or intra semantics in a corpus. To count for such informa-

tion, another set of methods are often used. Such methods use statistical and probabilistic

models to automatically discover latent semantic structures in text corpora. In particular,

instead of representing a document as a vector of independent terms, latent methods rep-

resent documents and terms as combinations of implicit semantic schemes that are often

hidden from other methods. Two methods can be identified under this category: Latent Se-
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mantic Indexing (LSI) and Latent Dirichlet Allocation (LDA). In what follows, we briefly

introduce both methods and discuss their limitations and applications in greater detail.

3.2.3.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a statistical method for inducing and representing

aspects of the meanings of words and passages reflective in their usage. LSI is based on

the assumption that there is some underlying (latent) structure in words that is partially

concealed by the variability of words used to express a certain concept [60]. In particular,

using statistically derived conceptual indices, LSI tries to overcome the problem of vocab-

ulary mismatch by capturing the semantic relations of synonymy (equivalent words) and

polysemy (multiple meanings) in software artifacts [218].

LSI is a corpus-based technique that uses Singular Value Decomposition (SVD) to

estimate the structure in word usage across documents in the corpus [64]. It starts by con-

structing a term-document matrix (A) for terms and documents in the corpus. This matrix

is usually huge and sparse. Word counts are often used to build this matrix. SVD is then

applied to decompose A into three new matrices A = USV T where T stands for trans-

pose. Dimensionality reduction is then performed to produce reduced approximations of

< U, S, V T > by keeping the top K eigenvalues of these matrices. A dimensionality reduc-

tion technique takes a set of objects that exist in a high-dimensional space and represents

them using low dimensions, often in a 2D or 3D space. These reduced matrices can be

described as < Uk, Sk, V
T
k >. The best value of K that fits a certain corpus can be obtained

experimentally; however, a value in the range of [100, 300] is frequently used [60]. From
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the newly reduced space, the equation V = ATUS−1 can be derived. Assuming A is a

matrix with n > 1 documents, for a given document vector d in A, d can be expressed

as d = dTUS−1. In LSI, the query is also treated as a document, which is the case in

traceability, where the query itself is a requirement or a piece of code. The query q can be

expressed in the new coordinates of the reduced space as q = qTUS−1. In the K-reduced

space, q and d can be represented as d = dTUkS
k
−1 and q = qTUkS

k
−1 respectively. The

similarity of q and d can then be calculated as the cosine measure:

sim(q, d) = sim(qTUkS
−1
k , dTUkS

−1
k ) (3.2)

In other words, retrieval in LSI is performed using the database of singular values and

vectors obtained from the SVD analysis. Therefore, a query and a document can have a

high cosine similarity even if they do not have any overlapping terms, as long as their terms

are semantically similar in the latent semantic space.

LSI has been employed in a wide range of software engineering activities such as cat-

egorizing source code files [174], detecting high-level conceptual code clones [177], and

recovering traceability links between documentation and source code [178]. The draw-

backs of LSI include its huge storage requirements, the computational costs of performing

SVD, and the assumption of normally distributed data, which might be inappropriate for

handling the word count data of the term-by-document matrix. In addition, it is often

difficult to add new documents to the corpus, and determining the optimal K can be com-

putationally exhaustive [70].

54



www.manaraa.com

3.2.3.2 Latent Dirichlet Allocation

LDA was first introduced by David Blei et al. [28] as a statistical model for automat-

ically discovering topics in large corpus of text documents. The main assumption is that

documents in a collection are generated using a mixture of latent topics, where a topic is a

dominant theme in the corpus.

A topic model can be described as a hierarchical Bayesian model that associates with

each document d in the collection D a probability distribution over a number of topics K.

In particular, each document d in the collection (di ∈ D) is modeled as a finite mixture

overK drawn from a Dirichlet distribution with parameter α, such that each d is associated

with each (ti ∈ K) by a probability distribution of θi. On the other hand, each topic t in the

identified latent topics (ti ∈ K) is modeled as a multidimensional probability distribution,

drawn from a Dirichlet distribution β, over the set of unique words in the corpus (W ),

where the likelihood of a word from the corpus (wi ∈ W ) to be assigned to a certain topic

t is given by the parameter φi.

LDA takes the documents collection D, the number of topics K, and α and β as inputs.

Each document in the corpus is represented as a bag of words d =< w1, w2, . . . , wn >.

Since these words are observed data, Bayesian probability can be used to invert the gen-

erative model and automatically learn φ values for each topic ti, and θ values for each

document di. In particular, using algorithms such as Gibbs sampling [210], a LDA model

can be extracted. This model contains for each t the matrix φ = {φ1, φ2, . . . , φn}, rep-

resenting the distribution of t over the set of words < w1, w2, . . . , wn >, and for each

document d the matrix θ = {θ1, θ2, . . . , θn}, representing the distribution of d over the set
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of topics < t1, t2, . . . , tn >. Once these matrices (vectors) are produced, a similarity mea-

sure such as the cosine distance can be used to compute the similarity of two documents

by comparing their topic distribution vectors to produce a ranked list of topically-similar

documents [113].

Selecting the number of topics (K) that best fits a certain text corpus is computationally

expensive. In NLP tasks, often a heuristic of 50 to 300 topics is empirically specified

depending on the size of the collection [28, 103, 253]. In some other cases, such values

are determined automatically. For example, Teh et al. [240] proposed a non-parametric

model known as Hierarchical Dirichlet Processes which extends LDA and seeks to learn the

optimalK automatically. However, while such heuristics and methods achieve satisfactory

performance in NLP tasks, they are not necessarily optimal for software systems [180,202].

Several methods have been proposed in the literature to approximate near-optimal com-

binations of LDA parameters (α, β, K) in software systems. Such methods can be a) man-

ual, based on a domain expert understanding of the system [7, 180] , b) experimentally-

determined, in which LDA parameters are tuned until a configuration that achieves accept-

able performance over a certain quality measure is reached [16, 22], or c) automatically

generated using statistical methods or machine learning approaches [101, 202].

LDA has been used to support several software engineering tasks, such as mining se-

mantic topics from source code [159], analyzing software evolution [243], and automated

tracing [16, 199]. Several drawbacks of LDA stem from its mathematical complexity. For

example, it can be easily misguided by uninformative words, also the use of the Dirichlet

distribution limits LDA ability in modeling data with high diversity [202]. Another limi-
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tation is the fact that the number of topics that are naturally present in the corpus should

be specified ahead, which is, similar to specifying the K in LSI, can be computationally

exhaustive [28].

3.2.4 Semantic Relatedness Methods

Semantic relatedness (SR) methods try to quantify the degree to which two concepts

semantically relate to each other by exploiting different types of semantic relations con-

necting them [18]. The main intent is to mimic the human mental model when computing

the relatedness of words. The human brain establishes semantic relatedness between words

based on their meaning, or context of use [112]. For example, both words <cow, horse>

refer to a mammal that has four legs, thus they can be considered related. Also, the words

<horse, car> both refer to a means of transportation for humans, thus they can be con-

sidered related from that perspective. Another aspect the brain examines is the frequent

association between words. Words that often appear together are likely to be related. For

example, the words <table, chair> appear together frequently, giving the human brain an

indication of relatedness.

A wide range of methods for measuring SR have been proposed in the literature. These

methods infer words relatedness by exploiting massive amounts of textual knowledge to

leverage all the possible relations that contribute to words similarity (e.g., Table 3.1). Such

information is usually available in external knowledge sources including, linguistic knowl-

edge bases (LKB) such as WORDNET [82], collaborative knowledge bases (CKB), such
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as the online encyclopedia Wikipedia [236], or general Web search results, such as Google

search [80].

SR has been applied to several NLP applications such as automated spelling correc-

tion [32], text retrieval [83], word sense disambiguation [203], question answering [4], and

automatic speech recognition [214]. In what follows, we describe two methods of semantic

relatedness that have been heavily investigated in related literature. These methods include

Explicit Semantic Analysis (ESA) and Normalized Google Distance (NGD).

3.2.4.1 Explicit Semantic Analysis

ESA represents the meaning of a text as a high dimensional weighted vector of con-

cepts, derived from Wikipedia [92]. In details, given a text fragment T =< t1, · · ·, tn >,

and a space of Wikipedia articles (C), initially a weighted vector V is created for the text,

where each entry of the vector vi is the TFIDF weight of the term ti in T. Using a centroid-

based classifier [111], all Wikipedia articles in C are ranked according to their relevance to

the text. Let kj be the strength of association of term ti with Wikipedia article cj , where

cj ∈< c1, c2, · · ·, cn > (N is the total number of Wikipedia articles), the semantic interpre-

tation vector S for text T is a vector of length N, in which the weight of each concept is

defined as:

Si =
∑
wi∈T

vi.kj (3.3)

Entries of this vector reflect the relevance of the corresponding articles to text T. The relat-

edness between two texts can then be calculated as the cosine between their corresponding

vectors.
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Among the different Wikipedia-based measures proposed in the literature, ESA has

been proven to achieve the highest correlation with human judgment [185, 236]. In addi-

tion, ESA compares text fragments. This makes it a suitable approach for traceability tasks

or even requirements engineering tasks in general [172]. In fact, due to its flexibility, ESA

has been extended to work in cross-lingual retrieval settings, which can be considered as

an extreme case of vocabulary mismatch [230]. Limitations of ESA can stem from the

complexity of its implementation, as it requires downloading the whole Wikipedia, which

requires substantial space requirements. In addition to the computational capabilities re-

quired for indexing such a large amount of data [92].

Table 3.1

Semantic Relations

Relation Description Example
Synonymy Equivalent <sick, ill>
Polysemy Multiple meanings <charge>

Hyponymy Type-of <ambulance, car>
Antonymy Opposite <male, female>
Meronymy Part-of <room, hotel>
Statistical Co-occurrence <patient, hospital>

3.2.4.2 Normalized Google Distance

The fuzzy set theory suggests that the degree of keywords’ co-occurrence can be con-

sidered as a measure of their semantic relatedness [18]. Based on that, the Normalized
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Google Distance (NGD) provides a method to estimate confidence scores between words

using words’ co-occurrences collected over Web search results (e.g., Google).

Formally, for each two terms being matched, a Google search query is initiated. The

semantic relatedness between two terms s(t1, t2) is then measured using the normalized

Google Similarity Distance (NGD) introduced by Cilibrasi and Vitanyi in [40] as:

s(t1, t2) =
log(max(D1, D2))− log(|D1 ∩D2|)

log(|D|)− log(min(D1, D2))
(3.4)

where D1 and D2 are the numbers of documents containing t1 and t2 respectively and

|D1 ∩ D2| is the number of documents containing both t1 and t2. The assumption is that

pages that contain both terms indicate relatedness, while pages that contain only one of the

terms suggest the opposite. Equation 3.5 [100] is often used to normalize NGD fit in the

range [0 - 1]:

nNGD = e−2̇NGD(w1,w2) (3.5)

For example, the NGD between the two terms patient and hospital can be calculated

as follows, a Google search is initiated for the terms patient and hospital separately. The

search process returns 573,000,000 and 1,200,000,000 hits for both terms respectively (i.e.,

D1 and D2 ). Next, a search using the phrase patient hospital is requested. Google returns

335,000,000 hits (pages in which both patient and hospital appear) representing |D1∩D2|.

Using Eq. 5, NGD (patient, hospital) = 0.446, given that Google search engine indexes

approximately ten billion pages (D = 1010).

In NGD, the smallest the distance, the closer the terms, hence NGD(x, x) = 0, and

the distance between two completely unrelated terms (e.g. |D1 ∩D2| = φ) is equal to∞.
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To quantify the similarity between different artifacts in the system, we initially calculate

the pairwise NGD similarity between all the unique terms in the corpus. These values

are normalized to fit in the interval [0 - 1], producing NDG. The value sNGD = 1 −

NGD(x, y) is then used to indicate the pairwise term similarity rather than dissimilarity

(i.e., 1 means an exact match) [95]. These values are stored in a thesaurus similar to the

synonyms thesaurus introduced earlier (VSM-T). Similarity between any two artifacts in

the system can then be calculated using Eq. 3.2, where αij is equal to the sNDG value

between the terms ti and tj .

NGD has been successfully applied in several NLP tasks such as search query predic-

tion [36] and concepts mapping [95]. However, the quality of NGD can be highly affected

by the noise usually returned by search engines due to the inherent ambiguity of some

terms, and the lack of context when matching individual terms.

Table 3.2

Categories of Semantically-enabled IR Methods Used in our Analysis

Description Semantics knowledge source Related work

Baseline
Vector Space Model VSM N/A N/A [222]

Semantic Augmented with Thesaurus
VSM with domain thesaurus VSM-T-TD Synonyms Domain Thesaurus [121, 246]

VSM with general purpose thesaurus VSM-T-WN Synonyms WordNet
Semantic Augmented with POS

VSM with Part-of-Speech tagging (nouns) VSM-POS-N Nouns OpenNLP [127] [39]
VSM with Part-of-Speech tagging (verbs) VSM-POS-V Verbs OpenNLP [127] [39]

Latent Semantic
Latent Semantic Indexing LSI Synonyms, Polynyms Corpus [60]

Latent Dirichlet Allocation LDA Topics Modeling Corpus [28]
Semantic Relatedness

Explicit Semantic Analysis ESA Synonymy, Hyponymy Wikipedia [92]
Antonym, Meronymy

Normalized Google Distance NGD co-occurrence Google [40]
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Summary The collection of methods presented in this section covers a wide spectrum

of semantically-enabled IR methods that have been intensively used in software engineer-

ing research in general, and traceability research in particular. Some of these methods

are focused on certain semantic relations such as synonymy (e.g., VSM-T), while other

methods expand the range of relations to cover more semantic relations such as polysemy,

hyponymy, and meronymy, and statistical associations such as co-occurrence of terms (e.g.,

LDA, LSI, ESA, and NGD). In addition, some of these methods use local knowledge

sources, such as a domain thesaurus or the internal textual structure of the corpus, to derive

their similarity scores (e.g., VSM-T-TD, LSI, and LDA), while other methods use external

sources, such as WORDNET and Wikipedia, to estimate similarity (e.g., VSM-T-WN, ESA,

and NGD).

Furthermore, The presented methods can be divided into explicit and latent. Explicit

methods are explicit in the sense that they manipulate concepts grounded in human cogni-

tion (e.g. ESA and NGD) or import semantics explicitly from an external source such as a

domain thesaurus (e.g. VSM-TD), or the grammatical structure of documents (e.g. VSM-

POS). On the other hand, latent methods use statistical methods to derive latent semantic

structures hidden in the natural language component of the system (e.g., LDA and LSI).

Table 3.2 summarizes the attributes of the different methods described in this section.

3.3 Experimental Settings

The main objective of our experimental analysis is to systematically compare the per-

formance of the various methods proposed in Table 3.2 in capturing traceability links
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among different types of artifacts. Three datasets are used to conduct the experiment in

this chapter including: CM-1, eTour, and iTrust.

To implement the different methods investigated in our analysis, we refer to several

state-of-the-art implementations available online. In particular, ESA implementation was

guided through several online implementations1 including pre-processing tools for parsing

Wikipedia dumps (e.g., WikiPrep) and carrying out ESA analysis. Wikipedia 2009 dumps

were used in our implementation. To implement NGD, the client library Google.NET2 was

used to initiate Google queries and interpret returned responses. For the implementation

of VSM-POS we used SharpNLP3, a port of the Java OpenNLP library written in C#. For

VSM-WN we used WordNet.Net4, a free open source .Net framework library for WORD-

NET written in C#. For the implementation of LSI we used Bluebit Matrix Calculator5, a

high performance matrix algebra for .NET programming which provides routines for sin-

gular value decompositions, eigenvalues, and eigenvectors problems. JGibbLDA6, a Java

implementation of LDA is used for topic modeling. This particular implementation uses

Gibbs Sampling for parameter estimation and inference [103].

We use two sample artifacts (q, d) from the iTrust dataset as an illustrative example

to guide our analysis. These artifacts are shown in Figure 3.1 a and b respectively. q

represents a requirement of the system (req. 3.1.1), it describes a basic login functionality.

d is a method that versifies user’s login information. There is a valid trace link between

1http://www.cs.technion.ac.il/∼gabr/resources/code/
2https://developers.google.com/gdata/client-cs
3http://sharpnlp.codeplex.com/
4http://opensource.ebswift.com/WordNet.Net/
5http://www.bluebit.gr/net/
6http://jgibblda.sourceforge.net/

63



www.manaraa.com

q and d. Some methods require artifacts to be indexed before matching them. Both q

and d were indexed using the indexing process described earlier [169]. The output of the

indexing process is shown in Figure 3.1 c and d.

Performance of different methods is presented in precision/recall curves over various

threshold levels (< .1, .2, ..., 1 >) [121]. A higher threshold level means a larger list of

candidate links, i.e., more links were considered in the analysis. Wilcoxon Signed Ranks

test is used to measure the statistical significance of the results [65]. This test is applied

over the combined samples from two related samples or repeated measurements on a single

sample (before and after effect). The IBM SPSS Statistics software package is used to

conduct the analysis. We use α = 0.05 to test the significance of the results. Note that

different IR methods are applied independently, so there is no interaction effect between

them.

Table 3.3

DiffAR (Eq. 1.4) Values Taken at 0.7 Threshold

baseline Thesaurus Support POS Support Latent Semantic Semantic Relatedness

VSM VSM-T-TD VSM-T-WN VSM-POS-N VSM-POS-V LSI LDA NGD ESA

iTrust 0.3 .21 0.17 0.33 0.33 0.01 0.01 0.02 0.11
eTour 0.22 .16 0.1 0.39 0.32 0.01 0.01 0.07 0.12
CM-1 0.1 .09 0.06 0.21 0.2 0.01 0.01 0.01 0.09
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3.1 Functions 
        ... 
          ...  

        3.1.3 Login:  
Each patient should authenticate 

himself using his credentials. In case 

of forgotten password see 3.1.4. 
         
        3.1.4 Forget Password: 

The system should provide a 

functionality for recovering 

user's password... 

<login> 

<patient> 

<Authenticate> 

<credential> 

<forget> 

<password> 
 

//Validate Patient's email and password 

public bool Login_OnClick(object sender) 

{ 

    if   

     (ValidateUser(EmailText.Text))                    

       &&  

       (ValidateUser(PasswordText.Text)) 

           return true; 

      else 

       { 

         Exception.Text ="Login failed"; 

         return false; 

       } 

} 

     

<patient> 

<email> 

<password> 

<login> 

<user> 

<validate> 

<fail> 
 

a) SRS document  b) Code Element 

c) Profile of requirement 3.1.3  

 

d) Profile of Method Login_OnClick 

Figure 3.1

Example 1: A Traceability Link
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3.3.1 Semantic-augmented Methods

We start our analysis by examining the performance of the semantic-augmented meth-

ods including VSM with thesaurus support (VSM-T) and VSM with Part-of-Speech tag-

ging (VSM-POS).

3.3.1.1 Vector Space Model with Thesaurus Support

Two methods are investigated under his category: VSM-T-DT and VSM-T-WN. We

propose an optimization algorithm in order to specify acceptable approximations for α in

Eq. 3.2. This algorithm is based on maximizing the recall. The main assumption is that

IR-based tracing tools favor recall over precision. This is mainly because commission er-

rors (false positives) are easier to deal with than omission errors (false negatives) [121].

The algorithm starts from α = 0, gradually increasing this value by .05 each time, and

monitoring the recall over constant threshold levels. The value of α that achieves the high-

est average recall at lowest threshold level (i.e., highest possible precision) is considered a

local maximum. We run this algorithm over our three experimental datasets. Results show

that average similarity coefficients of α = .43 and α = .81 achieve the best recall in VSM-

T-WN and in VSM-TD respectively. However, while this kind of optimization achieves

acceptable performance levels, more sophisticated approaches, such as assigning different

weights based on human judgment or statistical similarity analysis over WORDNET, can

be used. However, such analysis is beyond the scope of this chapter.

Figure 3.4 shows the performance of the two methods in comparison to the VSM base-

line in all three experimental datasets. Statistical analysis results are shown in the Semantic
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Augmented (Thesaurus) section of Table 3.4. Analysis shows that the VSM baseline starts

with relatively higher precision and recall at lower threshold levels. VSM-T-TD is able

to catch up halfway through, keeping up the good performance until almost achieving a

100% recall at higher threshold levels, while basic VSM stopped at 93.3% recall. Fig-

ure 3.4 also shows the fast drop in the precision of VSM, while VSM-TD shows a more

gradual decrease in the precision with the increase of the recall. Results also show the poor

performance of VSM-T-WN, which performs significantly worst than VSM and VSM-T-

TD in all three datasets. While VSM-T-WN is able to hit a 100% recall at higher threshold

levels, it retrieves so many false positives taking the precision down to significantly lower

levels.

The above analysis shows that the explicit introduction of synonyms in VSM improves

the overall recall. It also has a positive effect on the accuracy by keeping acceptable pre-

cision levels at higher recall levels. The poor performance of VSM-T-WN in comparison

to VSM-T-TD can be explained based on the fact that WORDNET is a general purpose

thesaurus; no domain knowledge is available to guide the synonym extraction process.

Therefore, this method introduces a high noise-to-signal ratio that leads to retrieving a

large number of false positives. In contrast, the domain thesaurus in WSM-T-TD was gen-

erated using terms from within the corpus, so noise levels were kept under control. Also,

the domain knowledge helped to deal with non-English words that the English dictionary

WORDNET fails to handle, especially in the eTour dataset where Italian words were used.

To further confirm our findings, we refer to our example in Figure 3.1. The similarity

scores between q and d given by VSM, VSM-T-TD, and VSM-T-WN were 0.54, 0.63, and

67



www.manaraa.com

0.47 respectively. Using VSM-T-WN, q’s vector has been expanded with the following

synonyms:

• credential: certificate

• authenticate: formalize, corroborate

• validate: formalize, corroborate

• password: watchword, word, parole, countersign

• user: exploiter

• fail: miscarry, neglect, die, go, break, break, flunk, bomb

• forget: bury, block, leave

This list shows that WORDNET introduces so many domain irrelevant terms (e.g., pa-

role, miscarry). While such enrichment might have a positive influence on the recall,

especially in retrieving some of the hard-to-trace requirements [94], it often causes a sig-

nificant drop in the accuracy, which is reflected in the fast drop in the precision values of

VSM-T-WN at higher threshold levels. This is also clearly shown by the DiffAR (Eq. 1.5)

values in Table 3.3 which show that VMS-T-WN is the least successful in distinguishing

between true and false links.

In contrast, using VSM-T-TD, the following synonym pairs were manually identified

based on the domain’s context: <password, credential>,<email, credential>,<authenticate,

validate>, and <patient, user>. It is important to point out here that VSM-T-TD is also

prone to noise. For example, the synonym pair <patient, user> might cause some confu-

sion, as in the iTrust dataset, the term user might refer to individuals other than patients,

such as visitors or doctors. However, regardless of that small amount of noise, VSM-T-

TD still gives a higher similarity score between q and d, which is desirable since (q, d) is
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actually a correct link. In addition, the DiffAR values of VSM-T-TD, shown in Table 3.3,

show that this method achieves an acceptable distinction between true and false links in

comparison to VSM and VSM-T-WN.

3.3.1.2 VSM with Part-of-Speech Tagging

Under this category we analyze the performance of VSM-POS-N, in which only nouns

are considered in the indexing process, and VSM-POS-V, in which only verbs are consid-

ered. POS is applied before indexing to preserve the grammatical structure of the text. In

case of source code, this process depends heavily on the availability of free-text comments

that can be correctly parsed. After indexing, documents are matched using the standard

cosine similarity (Eq. 3.1).

Performance precision/recall curves for running the two VSM-POS methods over our

three experimental datasets are shown in Figure 3.5. Statistical analysis results are shown

in the Semantic Augmented (POS) section of Table 3.4. Results show that traceability link

retrieval is heavily affected by the grammatical filters. In both cases, considering only

one part of speech has a significantly negative effect on recall in all three datasets. Even

though considering only nouns has relatively less negative impact on the performance than

considering only verbs, it still fails to match the baseline’s recall. The relatively better

performance of both methods in CM-1 can be explained based on the fact that CM-1 is a

requirements-to-design dataset, and free text is used to describe artifacts at both sides of the

traceability link. This allowed the POS tagger to generate more accurate lists of candidate

links for this particular dataset in comparison to the two other datasets. Results also show
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that considering only nouns in the indexing process achieves a significantly higher recall

than indexing verbs only. This suggests that nouns carry more information value when

retrieving traceability links. However, such information value is not sufficient enough to

achieve optimal recall levels.

In general, it can be concluded that this kind of augmentation fails to achieve a satis-

factory performance in the domain of automated tracing. However, if high precision levels

are favored over recall, these methods can be useful as they tend to filter out a large por-

tion of unwanted noise, usually caused by some irrelevant terms generated by the indexing

process. This behavior is clearly reflected in the DiffAR values (Table 3.3) which show

that, VSM-POS methods generate the highest values in terms of distinguishing between

true positives and false positives. However, this success does not give them an edge over

the baseline, as they significantly fail to outperform basic VSM.

Considering our example in Figure 3.1, VSM-POS-V reduces q and d vectors to<login,

Authenticate, forget> and <login, validate, fail> respectively. In contrast, VSM-POS-N

reduces q to <patient, credential, password> and d to < patient, user, email, password>.

Using VSM-POS-V, q and d only match at <login> taking the similarity down to 0.224,

and VSM-POS-N has two matches <patient, password> also taking the similarity score

of the true (q, d) link down to 0.336.

3.3.2 Latent Semantic Methods

Under this category we analyze the performance of the latent methods LSI and LDA.

To approximate an optimal value of K, LSI is ran iteratively while the K value is gradually
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increased by 5 after each iteration. K values that produce globally better precision/recall,

averaged over all the instances of each dataset, are kept. Running this optimization proce-

dure over our three experimental datasets produced K values of 35, 40, and 45 for iTruts,

eTour, and CM-1 respectively.

We follow a similar experimental approach to approximate an optimal number of topics

(K) for LDA. In particular, K is initially set to 40 topics. The document-topic distribution

matrix of each artifact in the system is then generated. A cosine comparison (Eq. 3.2) is

conducted to capture matching in the latent topic structures of different artifacts, generat-

ing candidate traceability links. The value of K is then increased by 40 and the process

is repeated. This particular step size of 40 is the minimum value that yields noticeable

changes in the recall. As mentioned earlier, We tie optimality to recall in our analysis.

Therefore, we follow a hill climbing approach to monitor the changes in the recall, best

recall values were detected at K values of 160, 180, and 180 for iTrust, eTour, and CM-1

respectively. At this range of K, topics tend to be more distinguishable from each other,

which makes these particular values nearly optimal for traceability analysis.

It is important to point out that the complexity of the study grows exponentially with

the inclusion of other LDA parameters such as α and β. Therefore, at this stage of our

analysis, we fix these values. This strategy is often used in related research to control for

such parameters’ effect [101, 161, 243]. In particular, values of α = 50/K and β = 0.1

are used. These heuristics have been shown to achieve satisfactory performance in the

literature [103, 253].
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The performance of LSI and LDA over our three datasets in comparison to the base-

line is shown in Figure 3.6. Statistical analysis results are shown in the Latent Semantics

section of Table 3.4. The results show that, in comparison to VSM, in all three datasets

both methods achieve relatively better recall. However, the only statistically significant

improvement in recall over the baseline is achieved by LSI over CM-1. The results also

show that this improvement in the recall has taken the precision down to significantly lower

levels in all three datasets. Further more, a closer look at the recall and precision curves

shows that, in iTrust and CM-1, LSI manages to outperform LDA at lower threshold levels.

This difference in the performance is more obvious in the iTrust dataset where LSI does

significantly better than LDA in terms of precision and recall. In the eTour dataset, both

LDA and LSI achieve an interchangeably good performance before reaching the maximum

recall and minimum precision point, i.e., all the links are retrieved (considered relevant).

Applying the latent methods over q and d in Figure 3.1 shows that both methods pro-

duce relatively low similarity scores. LSI returns a similarity score of 0.032 and LDA

returns a score of 0.007. These similarity scores were generated at class-granularity level.

For instance, using LDA, the topic distribution of the class that contains the function

Login OnClick (Figure 3.1-b) was matched with the topic distribution of requirement

3.1.3 (Figure 3.1-a).

The relatively higher score of LSI might be explained based on its operation, such

as a detected synonym relation between <credential, password>. However, there is no

clear indication if that is actually the case, or just a mathematical coincidence. In gen-

eral, the poor performance of latent methods can be ascribed to their internal operation.
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When dealing with software artifacts, the amount of knowledge available in a corpus is not

expressive enough to produce meaningful document-topic or document-term matrices for

LDA and LSI, which makes these methods prone to mathematical noise. This behavior was

clearly reflected in the DiffAR values shown in Table 3.3. In all three datasets, both latent

methods are the least successful in distinguishing between true and false links, achieving

the smallest DiffAR values among other investigated methods.

3.3.3 Semantic Relatedness Methods

Under this category, the methods of Explicit Semantic Analysis (ESA) and Normalized

Google Distance (NGD) are investigated. Performance of both methods in comparison to

the baseline is shown in Figure 3.7. Statistical analysis results are shown in the Semantic

Relatedness section of Table 3.4. Results show that in all three datasets, both methods are

able to hit a 100% recall at higher threshold levels. However, this improvement over the

baseline’s recall is statistically insignificant (p = .093 for NGD and p = .515 for ESA). On

the other hand, the precision is affected negatively due to the high number of false positives,

which is more obvious in NGD where the precision at 100% recall hits a minimum.

The diagrams also show that ESA achieves better precision and recall than NGD in all

datasets. This can be explained based on the fact that Wikipedia, being a semi-structured

source of knowledge, cancels a high ratio of noise usually returned by search engines, thus

achieving a higher precision. Another potential reason for the relatively poor performance

of NGD is the oversimplification of the problem. While ESA utilizes a smarter approach

73



www.manaraa.com

for extracting relatedness measures, NGD simply relies on hit counts to derive similarity,

ignoring several inherent problems related to term ambiguity.

To gain more insights into these methods, we refer to our example in Figure 3.1. ESA

compares vectors of text, thus the domain knowledge is somewhat preserved through the

context. For example the word fail in the context <user, login, fail> obviously refers

to a failure in the login process. In contrast, due to the lack of context in NGD, terms

such as user and fail can refer to so many types of failure. This behavior was reflected

in the DiffAR values shown in Table 3.3, which shows that ESA is more successful in

differentiating between true links and false links.

3.3.4 Inter-category Comparison

We conduct a comprehensive analysis to compare the performance of the best perform-

ing methods from each category. Results are shown in Figure 3.8. Pairwise statistical anal-

ysis is shown in the Inter-Category part of Table 3.4. In terms of recall, in all three datasets,

VSM-T-DT, ESA, and LSI were able to reach a maximum recall at higher threshold lev-

els, with VSM-T-DT achieving significantly higher precision, followed by ESA, which in

turn significantly outperforms LSI. In terms of precision, VSM-POS-N achieves highest

precision, outperforming all other methods significantly. However, it fails to achieve an

acceptable recall.

In terms of browsability measures, Figure 3.2 and Figure 3.3 show the MAP (Eq. 1.4)

and Lag (Eq. 1.6) results of the best performing methods from the different categories

of semantically-enabled IR methods. In general, results show that methods that achieve
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a reasonable performance in terms of quality, such as VSM-T-TD and ESA, also tend to

achieve a good performance in terms of browsability.

iTrust eTour CM-1

0.2

0.4

0.6

0.8

1

MAP

VSM VSM-T-TD VSM-POS-N LSI ESA

Figure 3.2

MAP Values in iTrust, eTour, and CM-1

In particular, in terms of MAP, Figure 3.2 shows that VSM-T-DT and ESA achieve

an interchangeably good performance over the experimental datasets, ESA outperforms

VSM-T-TD in iTrust and CM-1 while VSM-T-TD outperforms ESA in eTour. The results

also show the constantly poor performance of LSI and VSM-POS-N, achieving a signifi-

cantly lower MAP in all datasets. LSI tends to scatter true positives all over the ranked list

of candidate links, with higher concentration of these links at the bottom of the list, thus

taking the average precision (AP) value down for each query. VSM-POS-N, on the other

hand, captured a smaller number of correct links, thus increasing the number of links with

0 precision (false negatives) in Eq. 1.5.
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VSM VSM-T-TD VSM-POS-N LSI ESA

Figure 3.3

Lag Values in iTrust, eTour, and CM-1

Similar patterns are observed in the Lag results, shown in Figure 3.3. The method

that achieved the highest precision (VSM-POS-N) acquired the lowest Lag values (i.e.,

smaller number of false positives separate true positives). Results also show that VSM-

T-TD achieves a comparable performance to the baseline, also outperforms ESA and LSI

in all three datasets. While ESA manages to keep very close performance in both iTrust

and CM-1, in the eTour dataset ESA performance is significantly worst. In contrast, LSI

achieves the worst performance in all three datasets. This means that LSI tends to scatter

the correct links all over the list with higher numbers of false positives separating them.

Finally, while identifying a winning technique is not a main goal of our analysis, in

terms of the primary and secondary performance measures, our overall analysis results

lean toward announcing VSM-T-TD as the most reliable semantically-enabled IR method

for traceability link recovery.
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3.3.5 Limitations

In our experiment, there are minimal threats to construct validity as standard IR mea-

sures (recall and precision), which are used extensively in requirements traceability re-

search, are used to assess the different methods investigated in this chapter. These mea-

sures are also complemented by another set of secondary measures (MAP, DiffAR, and

Lag (Section 1.5.2)) that are used to provide more insights into the browsability of the

generated lists of candidate traceability links. We believe that these two sets of measures

sufficiently capture and quantify the different performance aspects of the various methods

evaluated in this study.

In terms of external validity, a major threat comes from the datasets used in our ex-

periment. In particular, two of these datasets were developed by students and may not

be representative of a program written by industrial professionals. Also, all three of our

datasets are limited in size, which raises some scalability concerns. However, we believe

that the use of three datasets, from different application domains, helps to mitigate these

threats. Finally, specific design decisions and heuristics used during the experiment can

also limit the study’s applicability. Such decisions include using Wikipedia 2009 in ESA,

using TFIDF weights in our baseline, the decision of only considering verbs and nouns in

VSM-POS, and the heuristic values of α and β used in LDA.

Finally, regarding the internal validity of our experiment, a potential threat comes from

our specific implementation of the different methods investigated in this chapter. However,

we believe that using freely available open source tools and libraries in our implemen-

tations helps to mitigate this threat. It also makes it possible to independently replicate

77



www.manaraa.com

our study. In addition, an experimental bias might stem from the fact that some of the

procedures in our experiment were carried out manually. For instance, the local domain

thesaurus in VSM-T-TD was created manually by our researchers, based on their under-

standing of the system, which might raise some subjectivity concerns that can affect the

internal validity of our study.

3.4 Discussion and Impact

Capturing and maintaining accurate lists of requirements traceability links is vital to

managing requirements in the multiple phases of the software development process [97,

121]. In this chapter, we investigated the performance of several semantically-enabled IR

methods in bridging the semantic gap that often appears in the system as a direct result

of software evolution [152, 153]. In particular, we experimentally assessed the effect of

different semantic schemes on the performance of various IR-based traceability methods.

Our results revealed that explicit semantic methods (VSM-T, VSM-POS, ESA, and

NGD) tend to do a better job in recovering traceability links than latent methods (LSI and

LDA). Latent methods, though able to achieve higher recall levels, they often fail to com-

pete with the precision of other methods. This can be explained based on the fact that

lexicons and syntax of NL documents differ from those of software artifacts. Source code

is more constrained and less varied than natural language, which makes it more regular

and repetitive [116, 159]. This limits the ability of latent methods to extract hidden se-

mantics schemes using statistical and probabilistic models. In fact, latent methods were

initially developed to work with contents of large document collections [28,103,192,262].

78



www.manaraa.com

However, software systems are often much smaller than NL text corpora, depriving such

methods of context, and causing them to behave randomly, even when calibrated using set-

tings that usually achieve adequate performance over natural language corpora [116, 223].

For instance, poor parameter calibration or wrong assumptions about the nature of the data

often lead a method such as LDA to generate several irrelevant or duplicated topics [202].

Probably the most interesting observation in our analysis is that considering more se-

mantic relations in retrieval does not necessarily lead to a better tracing performance. In-

stead, a local and a more focused semantic support is expected to serve the automated

tracing problem better. This was clearly reflected in the performance of VSM-T and ESA,

while both methods achieved a relatively good performance, VSM-T managed to keep a

significantly higher precision in all three datasets, also significantly higher recall in both

eTour and CM-1. In particular, our analysis shows that methods which only consider the

semantic relation of synonymy, tend to be the most reliable for traceability link recovery.

This can be explained based on the fact that software artifacts are not as semantically rich

or complex as free text. In fact, it has been observed that developers tend to shy away

from using fancy language when writing specifications. Instead, software artifacts are

usually expressed in a simplified form of the natural language, with a smaller vocabulary

set and simplified grammars [77]. In addition, source code developers tend to abbreviate

names; causing concepts to be denoted through their full name as well as multiple abbre-

viations [9, 61], thus increasing the density of synonymy relations in software systems.

Our results also show that external sources of knowledge such as Wikipedia or WORD-

NET tend to increase the level of noise in retrieval. This can be explained based on the fact
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that often a coherent vocabulary structure, derived from the system application domain,

is used through out the project’s life-cycle. Therefore, as shown in our analysis, using

external and general-purpose sources of knowledge to enrich the system’s vocabulary will

most likely corrupt that coherent structure with unrelated terms, thus causing a significant

decline in the precision of IR methods. In addition, as observed earlier, synonyms gen-

erated by abbreviating domain names, seem to be the most occurring semantic relation

during software evolution. Being domain-specific, such synonyms are often not included

in general purpose dictionaries or knowledge sources.

Finally, in terms of tool support, our results reveal how different methods, at different

levels of semantic support, might be useful in certain contexts of requirements manage-

ment. For example, in tools where accuracy is the main concern, methods that achieve

significant precision levels might be useful (e.g., VSM-POS). However, in safety-critical

systems, which imposes special demands on ensuring quality and reliability of the system,

methods that achieve higher recall levels might be more appropriate [45]. In addition, if

practicality is a major concern, then methods that utilize external knowledge sources such

as Wikipedia or WORDNET should be avoided. Such methods require relatively higher

time and space requirements to function properly (e.g., initiating multiple Web search re-

quests or long search queries in NGD, or downloading and indexing Wikipedia in ESA).

3.5 Related Work

Several IR-based traceability link recovery methods have been proposed in the litera-

ture. Next we selectively review some of the seminal work in this domain over the last
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decade. Initial work on IR-based traceability was conducted by Antoniol et al. [12]. The

authors used Probabilistic Network Model (PN) and basic Vector Space Model (VSM) to

recover traceability links between source code and free text documents. This work pro-

vided an initial evidence of the practicality of IR methods as a potential solution for the

automated tracing problem. Marcus and Maletic repeated the same case study using Latent

Semantic Indexing (LSI) [178]. They compared the performances of LSI with VSM and

PN. Results showed that LSI can achieve a comparable performances without the need for

stemming.

Huffman-Hayes et al. [120] used two different variants of VSM including retrieval

with key phrases and VSM with thesaurus support, to recover traceability links between

requirements. The former approach was found to improve recall, however it affected pre-

cision negatively. On the other hand, VSM with thesaurus support resulted in improved

recall and precision. A more recent work by the same authors addressed issues related

to improving the overall quality of the automated tracing process [121]. In particular, the

authors analyzed the performance of several IR methods including VSM, VSM with the-

saurus support, and LSI, and incorporating relevance feedback from human analysts in the

retrieval process. Results showed that using analysts’ feedback to tune the weights in the

term-by-document matrix of the vector space model improved the final tracing results.

Settimi et al. [226] compared the performance of several IR techniques in tracing UML

models. In particular, the authors applied VSM and one of its variants that uses pivot

normalization to trace requirements to UML artifacts, code, and test cases. The results

raised some concerns about the adequacy of the IR-based paradigm in solving the trace-

81



www.manaraa.com

ability problem. However, they found that such methods can be used to alleviate some

of the manual effort in requirements tracing tasks. Similarly, Oliveto et al. [199] com-

pared the performance of several IR-based traceability recovery methods including the

Jensen-Shannon (JS) method, VSM, LSI, and LDA. Results showed that JS, VSM, and

LSI were almost equivalent in that they captured almost the same information. However,

LDA achieved lower accuracy.

Cleland-Huang et al. [46] introduced three enhancement strategies (hierarchical mod-

eling, logical clustering of artifacts, and semi-automated pruning) to improve the perfor-

mance of the probabilistic network model. Results showed that such strategies can be used

effectively to improve trace retrieval results and increase the practicality of tracing tools.

Similar to this work, in our previous work [195], we proposed an approach based on the

cluster hypothesis to improve the quality of candidate link generation for requirements

tracing. The main assumption was that correct and incorrect links can be grouped into

high-quality and low-quality clusters respectively. Result accuracy can thus be enhanced

by identifying and filtering out low-quality clusters. Evaluating this approach over multiple

datasets showed that it outperformed a baseline pruning strategy.

Lormans and van Deursen [163] used a new strategy, based on LSI, to trace require-

ments to test case specifications and design artifacts. Their experimental analysis on three

case studies provided an evidence that LSI can increase the insight in a system by means

of reconstructing the traceability links between the different artifacts. Later, Asuncion et

al. [16] employed topic modeling through the use of Latent Dirillect Allocation (LDA)
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to recover different types of traceability links. Results showed that the combination of

traceability with topic modeling can be useful in practice.

Gibiec et al. [94] used a web-based query expansion algorithm to bridge the vocab-

ulary gap in the system. Evaluating this approach over a group of healthcare datasets

showed its ability to improve the traceability of hard-to-trace requirements. Similarly, in

our earlier work [172], we introduced semantic relatedness as an approach for traceability

link recovery. Results showed that the Wikipedia-based ESA achieves a balance between

LSI and VSM. It significantly outperforms the recall of VSM and the precision of LSI in

most cases, showing more stable performance at different threshold levels. In addition,

we conducted a preliminary analysis of VSM with Part-of-Speech tagging in recovering

traceability links [168]. Results showed that POS could not beat basic VSM in terms of

precision and recall. However, a more recent work on POS was conducted by Capobianco

et al. [34]. Analysis of this approach over five software artifact repositories indicated that

nouns-based indexing of software artifacts significantly improves the accuracy of IR-based

traceability recovery methods.

3.6 Conclusions and Future Work

In this chapter, we conducted an experimental analysis to assess the performance of

various semantically-enabled IR methods, including semantic-augmented, latent semantic,

and semantic relatedness methods, in capturing requirements traceability links in software

systems.
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The performance of the different methods in terms of results’ quality and browsability

was compared to the basic VSM as an experimental baseline. Results showed that explicit

semantic methods (VSM-T, VSM-POS, ESA, and NGD) tend to outperform latent meth-

ods (LSA and LDA). In addition, results revealed that methods that use selective indexing

based on the lexical form of terms (VSM-POS), cancel a considerable amount of textual

noise, thus achieve the best precision. However, such methods often suffer on the recall as

a considerable amount of information is lost when filtering out other parts of speech. Re-

sults also showed that considering more semantic relations in retrieval does not necessarily

lead to improved performance. Instead, a more focused explicit semantic support, in par-

ticular synonyms from a domain-specific thesaurus, is expected to achieve more adequate

performance levels.

Research directions to be pursued in our future work include:

• Automated tracing methods: Our work in this chapter is limited to VSM-based meth-
ods. In our future work, we are interested in exploring other semantically enabled
methods that apply different semantic schemes to the problem. For instance, we are
interested in assessing the performance of ontology-based traceability tools which
have been shown to achieve satisfactory performance in the domain of automated
tracing [107, 263].

• Requirements engineering tasks: In this chapter, we have limited our analysis to the
requirements traceability problem. In our future work, we are interested in studying
the performance of semantically-enabled methods in supporting other requirements
engineering tasks in which the IR paradigm is often employed. Such tasks include
for example, reusable requirements retrieval [168], requirements discovery [25], and
evolution [21].

• Tool support: Our analysis in this chapter suggested several guidelines for the de-
sign and development of practical automated tracing tools. It is in the scope of our
future work to implement these findings in a working prototype to support various
requirements engineering tasks besides traceability. In addition, a working prototype
will allow us to conduct human studies to assess the usability of different methods
in practice.
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Table 3.4

Wilcoxon Signed Ranks Test results (p-values at α = .05)

iTrust eTour CM-1

Recall Precision Recall Precision Recall Precision

(Z, p) (Z, p) (Z, p) (Z, p) (Z, p) (Z, p)

VSM x VSM-T-TD (-.357, .721) (-1.785, .074) (-.255, .799) (-1.580, .114) (-1.784, .074) (-1.785, .074)

VSM x VSM-T-WN (-2.293 .022) (-2.803 .005) (-2.293 .022) (-2.803 .005) (-2.191 .028) (-2.803 .005)

VSM-T-TD x VSM-T-WN (-2.666 .008) (-2.803 .005) (-2.666 .008) (-2.803 .005) (-2.666 .008) (-2.803 .005)

VSM x VSM-POS-N (-2.803, .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005)

VSM x VSM-POS-V (-2.803, .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005)

VSM-Noun x VSM-Verbs (-2.803, .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005) (-2.803 .005)

VSM x LSI (-.866, .386) (-2.803, .005) (-.459, .646) (-2.803, .005) (-2.090, .037) (-2.803 .005)

VSM x LDA (-1.478, .139) (-2.803, .005) (-.051, .959) (-2.803, .005) (-1.784, .074) (-2.803, .005)

LSI x LDA (-2.490, .013) (-2.380, .017) (-1.599, .110) (-.652, .515) (-.652, .515) (-.178, .859)

VSM x ESA (-1.580, .114) (-.765, .444) (-.866, .386) (-2.803, .005) (-.968, .333) (-2.803 .005)

VSM x NGD (-1.682, .093) (-2.803, .005) (-.663, .508) (-2.803, .005) (-1.479, .139) (-2.803, .005)

ESA x NGD (-.652, .515) (-2.803, .005) (-2.666, .008) (-2.803, .005) (-2.547, .011) (-2.803, .005)

VSM-T-TD x VSM-Nouns (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.701, .007) (-2.803 .005)

ESA x VSM-T-TD (-2.429, .015) (-2.599, .009) (-2.666, .008) (-2.803, .005) (-2.666, .008) (-2.803 .005)

ESA x VSM-Nouns (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803, .005) (-1.988 .047)

LSI x VSM-T-TD (-2.192, .028) (-2.803, .005) (-1.599, .110) (-2.803, .005) (-.652, .515) (-2.803 .005)

LSI x VSM-Nouns (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803, .005) (-2.803 .005)

ESA x LSI (-2.668, .008) (-2.803, .005) (-2.547, .011) (-2.803, .005) (-2.666, .008) (-2.803, .005)
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CHAPTER 4

CLUSTER BASED RETRIEVAL

Due to the inherent trade-off between recall and precision, IR-based automated tracing

methods cannot achieve a high coverage without also retrieving a great number of false

positives, causing a significant drop in result accuracy. In this chapter, we propose an

approach to improve the quality of candidate link generation for the requirements tracing

process. We base our research on the cluster hypothesis which suggests that correct and

incorrect links tend to be grouped in high-quality and low-quality clusters respectively.

Result accuracy can thus be enhanced by identifying and filtering out low-quality clusters.

We describe our approach by investigating three open-source datasets, and further evaluate

our work through a case study. The results show that our approach outperforms a baseline

pruning strategy and that improvements are still possible.

4.1 Introduction

IR-based tracing tools favor recall over precision. This is mainly because commission

errors (false positives) are easier to deal with than omission errors (false negatives) [121].

However, retrieving an excessive number of links can seriously affect the practicality of

such tools. A tool that always returns all possible links is guaranteed to have a 100% recall,

but is practically useless. Researchers have therefore focused on retrieving and ranking the
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correct traceability links in the upper part of the result list, so that the human analyst can

save effort by vetting only the top-ranked subset [46, 57]. The links with similarity scores

above a certain threshold (cutoff) value are called candidate links [69, 121]. For example,

a threshold of 0.3 was used in [37]; other approaches (e.g., [46, 57, 121]) have evaluated

different cutoff values.

Determining threshold in practice can be challenging: Using a low threshold value re-

trieves a larger number of correct links than using a high value, but more incorrect links

are captured at the same time [37]. Among the many performance enhancement techniques

(e.g., [178, 252]), no approaches to date can largely decrease false positives at low cutoff

points and significantly increase correct links at high cutoff points [37]. In this chapter,

we aim to enhance IR-based candidate link generation by examining the cluster hypothe-

sis [175], which states that relevant documents tend to be more similar to each other than

to irrelevant documents. When adapted to traceability, the hypothesis suggests that correct

and incorrect links can be grouped in high-quality and low-quality clusters respectively.

Thus, the performance of IR-based tracing can be enhanced by selecting candidate links

from high-quality clusters. It is our conjecture that discarding the links from low-quality

clusters helps tackle the threshold determination problem.

Prior work in this area has employed clustering as an alternative to the ranked-list

presentation to increase the understandability of the candidate links [69]; however, recall

and precision are unchanged before and after clustering. In contrast, we leverage clustering

to directly improve precision by reordering the retrieved traceability links. Some efforts

have also combined clustering with other enhancement techniques [37, 46, 252]; however,
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the clustering effect is often implicit in these integrated approaches. In contrast we perform

thorough analysis of the underlying clustering algorithms, adopt novel metrics to explore

the interplay of key clustering parameters, and conduct rigorous evaluations on both open-

source and proprietary projects. The contributions of our work lie in the development of

a set of detailed procedures to examine the cluster hypothesis in the context of IR-based

requirements tracing. Our work not only advances the fundamental understanding about

the role clustering plays in traceability, but also enables principled ways to increase the

practicality of automated tracing tools. In what follows, we discuss how clustering has

been employed in the related literature.

4.2 Clustering in Information Retrieval

Clustering is an unsupervised learning method which automatically divides data into

natural groups based on similarity [132]. There has been extensive research on using clus-

tering to improve IR systems. The basic tenet is known as the cluster hypothesis, stating

that relevant documents tend to cluster near other relevant documents and farther away

from irrelevant ones [175]. We discuss related work in IR from three perspectives: docu-

ment, query, and search results. On the document side, clustering is mainly used to increase

retrieval efficiency. As the number of documents increases, matching the query to all docu-

ments can degrade the system performance. A solution is to build a clustering of the entire

collection and then match the query to the cluster centroids [257]. In this way, clustering is

done in advance so as to enhance the performance at search time. This is referred to as static

clustering as only one fixed clustering is made to accommodate all user queries. Hearst and
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Pedersen [115], in designing the Scatter/Gather system, performed dynamic clustering, in

which document clusters are formed dynamically depending on the user query. The eval-

uations demonstrated that Scatter/Gather consistently improved retrieval results and that

users were able to distinguish high-quality clusters from low-quality ones [115].

On the query side, clustering is particularly useful for overcoming the well-known

short query problem where the user input provides insufficient information. In this context,

previously encountered queries are collected and placed into groups. For example, Yi and

Maghoul [259] presented an algorithm to compute equivalent classes of queries (i.e., query

clusters) and tested the algorithm on a Web search dataset consisting of over 16M unique

queries. For a new incoming query, its equivalent class helps to expand the query with

terms that reflect similar information needs [259]. In cases where the new query is not

similar to any of the document cluster centroids, it may instead be similar to one of the

query groups, which in turn can be used to match document clusters [257].

On the result side, clustering is widely applied to support users interactive brows-

ing [115, 156, 261]. In a ranked list presentation, the search results are isolated from their

context. Organizing and displaying the retrieved artifacts in topic-coherent clusters can

facilitate the comprehension and evaluation of the search results. However, in order to

effectively provide the contextual information (e.g., generating cluster labels and deter-

mining the ordering among the result clusters), human intervention is still required. In

fact, a series of experiments showed that result clustering could be as effective as the in-

teractive relevance feedback based on query expansion [156]. Clusterings primary benefit,

then, arises from the sense of control it offers over the relevance feedback process [156].
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4.3 Clustering in Traceability

Despite the broad role clustering plays in supporting IR systems, the application of

clustering in traceability has emerged only recently. We discuss here first the seminal work

by Duan and Cleland-Huang [69] on using clustering to improve the comprehension and

evaluation of the retrieved traceability links, followed by the hybrid approaches [37, 46,

252] that synthesize clustering and other trace retrieval enhancement strategies.

The work in [69] is among the first to systematically investigate the application of clus-

tering in traceability. Duan and Cleland-Huang [69] focused on the result-side clustering.

The main goal was to increase understandability and reduce the human effort needed to

evaluate a set of candidate links. They compared a set of representative clustering algo-

rithms on three traceability datasets, proposed heuristics to determine optimal clustering

granularity, and developed metrics to rank the trace clusters. The evaluation on tracing

five business requirements showed that clustering traceability links led to fewer number of

decision points than presenting links in an ordered list, thereby saving the effort needed to

evaluate the candidate links [69].

While result-side clustering improves comprehensibility, it is the same set of candi-

date links that is retrieved by non-clustering techniques and the clustering-enabled method

described in [69]. In other words, recall and precision are unaffected before and after clus-

tering. In attempts to retrieve higher quality links than the baseline IR method, clustering

has also been studied. For instance, Cleland-Huang et al. [46] introduced three enhance-

ment strategies (hierarchical modeling, logical clustering of artifacts, and semi-automated

pruning) to improve the probabilistic network model, Chen and Grundy [37] described
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three supporting techniques (regular expression, key phrases, and clustering) to improve

VSM, and Wang et al. [252] presented four strategies (source code clustering, identifier

classifying, similarity thesaurus, and hierarchical structure enhancement) to improve LSI.

Although the integrated strategies are promising, the studies showed mixed results, e.g., the

approach in [252] resulted in higher precision but lower recall than LSI. However, perhaps

the more important question unanswered in these studies is the enhancement effect resulted

from clustering alone rather than from the combined approaches. Lack of such knowledge

limits our understanding of clusterings strengths and weaknesses, which in turn impedes

the selection of appropriate clustering techniques to be complemented with other types of

strategies. Understanding the role clustering plays in enhancing candidate link generation

requires rigorous empirical inquires. This is precisely the focus of our research.

4.4 Research Methodology

This section presents our research methodology including or central research hypothe-

sis and associated research questions. For readability purposes, all the analysis figures are

placed at the end of this chapter.

4.4.1 Central Hypothesis

The cluster hypothesis has been shown true on multiple occasions [37,46,69,115,156,

252, 257, 261]. When applied in requirements tracing, the cluster hypothesis suggests that

correct links tend to be more similar to each other than to incorrect links. This motivates us

to formulate our central hypothesis clustering algorithms and optimal clustering granular-
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ity exist in grouping correct and incorrect links into high-quality and low-quality clusters

respectively.

The overarching goal of our research, which is to capture all potential correct trace-

ability links and few incorrect ones, can be accomplished by discovering the appropriate

clustering mechanisms, distinguishing between high- and low-quality clusters, and filtering

out the links in low-quality clusters.

Figure 4.1 shows our clustering-based enhancement approach in the context of a base-

line tracing process. The baseline process is commonly adopted in state-of-the-art tracing

tools like RETRO [121] and Poirot [47]. The human analyst selects some requirements

artifact to trace, and the IR algorithm retrieves the traceability links by computing the

similarity between the query and the software artifacts in the repository. Pruning aims to

semiautomatically discard the portion of the retrieved results with a low density of cor-

rect links. If this portion were presented to the analyst, then the effort required to discard

false positives would become much higher than the effort to validate correct links. For this

reason, most approaches use some method to cut (or filter) the result list, thus presenting

the human analyst only the subset of retrieved links (or candidate links). Typical prun-

ing strategies include: 1) an absolute threshold on the similarity value, e.g., links whose

similarity scores are greater than or equal to 0.3 are chosen as candidate links in [37];

and 2) a relative cutoff point for the proportion of retrieved results, e.g., 70% of the most

similar links are selected in [169]. The clustering-based enhancement that we propose is

highlighted using white boxes in Figure 4.1. We discuss the key aspects of each step as

follows.
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A Clustering-based Approach to Enhancing Link Generation for Requirements Tracing
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4.4.1.1 Clustering

We perform clustering after the initial search is completed. This makes our clustering

dynamic rather than static, i.e., we do not assume that if two artifacts L1 and L2 are both

correct or incorrect links for requirement RA, they must both be correct or incorrect links

for RB. The link clusters produced in our approach are query-dependent, and therefore

have the potential to be closely tailored to the characteristics of the specific requirement

being traced.

4.4.1.2 Distinguishing

Upon the identification of a clustering that divides correct and incorrect links into sep-

arate groups, it is crucial to research automated ways to differentiate between high- and

low-quality clusters. We propose several heuristics and test their performance empirically.

4.4.1.3 Filtering

Filtering in our approach does not rely solely on a links similarity to the query, but takes

into account the cluster the link belongs to as well. In other words, a links neighbors also

define its relevance. Our filtering is thus performed on a cluster basis, which is fundamen-

tally different from the baseline pruning strategy of acting on individual links according to

their similarity scores or rankings.
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4.4.2 Research Questions

The overall goal of our research is to assess the extent to which the cluster hypothesis

can be leveraged to enhance automated traceability. We refine our general goal with a set

of specific research questions (Figure 4.1).

• What is the clustering algorithm that best separates correct and incorrect links into
different groups? What is the optimal granularity (e.g., the optimal number of result-
ing clusters) to do so?

• What is the most adequate heuristic in uncovering the quality of traceability link
clusters?

• As the links in low-quality clusters are removed, what is the most appropriate way
to arrange the remaining candidate links?

The answers to the research questions will enable the discovery of the underlying clus-

tering mechanisms, along with the supporting strategies, for improving candidate link gen-

eration. Next, we present an experimental study that seeks to answer these research ques-

tions.

4.5 Experimental Investigation

In most cases, identifying the best settings for effectively integrating clustering in a

working application is viewed as an NP-complete optimization problem [145]. For this

reason, we are compelled to make some assumptions about the general clustering features

in order to achieve an acceptable approximation. In particular, we restrict our discussion

to mutually exclusive and collectively exhaustive clustering, which allows each of the re-

trieved traceability links to be assigned to one and only one cluster. Three datasets are used

in our investigation including iTrust, eTour, and CM-1. We use these datasets to investigate
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the 3 enhancement procedures in our approach. For each procedure, we state the experi-

mental setting, describe the evaluation method, and present the result analysis. We discuss

the threats to validity in Section 4.5.4.

4.5.1 Clustering Traceability Links

In one of the most systematic comparisons of traceability link clustering [69], three

algorithms, namely Hierarchical Agglomerative Clustering (HAC), k-means, and bisecting

divisive clustering (bisecting for short), are evaluated. These algorithms cover a wide spec-

trum of clustering methods available in the literature. They are also known to perform well

in documents clustering [132]. We test a similar set of algorithms in our study, including

k-means, bisecting, and 3 variants of HAC including:

SL(SingleLinkage) : M(A,B) = min{d(a, b) : a ∈ A, b ∈ B}. (4.1)

CL(CompleteLinkage) : M(A,B) = max{d(a, b) : a ∈ A, b ∈ B}. (4.2)

SL(AverageLinkage) : M(A,B) =
1

|A| · |B|
∑
a∈A

∑
a∈A

d(a, b). (4.3)

where d(a, b) is the distance between data objects a and b, andM(A,B) defines the linkage

(merging) criteria for clusters A and B. For example, SL merges the two clusters with the

smallest minimum pairwise distance. All the five clustering algorithms in our study rely on

the terms contained in the software artifacts to compute similarity. For our experiments, the

similarity scores are computed using TFIDF [175], a popular scheme in VSM which has

been validated through numerous traceability studies [118,121,199]. Such a choice, at the

same time, defines the baseline tracing mechanism (Figure 4.1) in our study to be TFIDF
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in VSM. We use our indexer, described in Chapter 1, to pre-process both source code and

(requirements & design) documents. Three steps are involved: tokenizing, filtering, and

stemming [169].

When exploring the optimal clustering granularity, two interdependent parameters are

usually calibrated: the number of clusters k and the cluster size |C|. In our case, the

primary driving factor shared by all the five algorithms is k, which we use to gauge the

clustering granularity. In terms of |C|, especially for k-means and bisecting, we adopt the

rule of thumb to generate balanced clusters, i.e., relatively uniformly sized clusters [69].

4.5.1.1 Evaluation Method

In general, clustering quality can be evaluated either internally or externally [132].

Internal evaluation does not refer to external knowledge (e.g., an authoritative decompo-

sition prepared by human experts) and therefore cannot assess the goodness of a cluster-

ing method. Rather, internal evaluation compares how close the clusterings are to each

other. In [69], for instance, a pairwise correlation analysis was performed between the

{HAC, k−means, bisecting} algorithms. The result showed that at reasonable clustering

granularity (of 5-6 clusters or higher) no significant difference was observed between the

clusters produced by the three algorithms. Internal evaluation is particularly suited for ex-

ploratory studies where clustering is conducted to discover patterns in the input data [132].

When evaluated externally, clustering results are compared with a gold standard or

classification labels [132]. These ground-truth clusters, also known as authoritative figures,

are usually produced by experts or provided based on a natural decomposition of the data.
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A clustering algorithm can then be evaluated based on how much of the known structure it

can recover [132]. External evaluation fits our purpose since our objective is to assess the

“goodness” of the clusterings, as well as to determine the optimal clustering granularity.

We devise a gold standard (not the only gold standard) in our study by directly applying

the cluster hypothesis to the automated tracing problem. In an ideal situation, only two

clusters should be present: one cluster has a 100% recall and precision (i.e., it contains only

and all the correct traceability links), and the other cluster has a 0% recall and precision

(i.e., it contains only and all the false positives). Figure 4.2-a illustrates this ideal situation.

In order to calibrate the clustering granularity k while externally evaluating the cluster-

ing results, we adopt the MoJo distance measure [254], the de facto metric embraced by

the software clustering community. MoJo measures the distance between two decomposi-

tions of the same software system by computing the number of Move and Join operations

to transform one to the other. Intuitively, the smaller the MoJo distance, the closer the

two clustering results. Take Figure 4.2 as an example, the MoJo value of transforming

Figure 4.2-b to Figure 4.2-a is 2: moving the correct link from E to C and then joining D

and the revised E together. We integrate MoJos optimal implementation described in [254]

(release 2.04) into our current analysis.

4.5.1.2 Result Analysis

Before discussing the results, it is important to comment on the intrinsic intractability

of clustering with constraints [52] so as to better understand our analysis procedure shown

next. The problem of separating n data points into k disjoint sets such that pairwise dis-
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MoJo Analysis

tances within sets are bounded by a constant is known to be NP-complete [145]. Therefore,

most formulations of the clustering problem are NP-hard, which means that there cannot

be an efficient clustering algorithm that satisfies all constraints for all datasets [52]. How-

ever, acceptable approximations can be achieved by using procedures that optimize one or

more fitness measures. The main goal is to choose from a large set of possible solutions the

one that gives the best value for the selected measures. Our procedure for finding optimal

clustering settings can be described as follows:

1. For each ci ∈ Clustering Algorithms

2. Loop (initialize k=2) AND (increment k by 1)

3. For each dj ∈ Datasets

4. For each qm ∈ Trace Query(dj )

5. RTLm← Retrieve Traceability Links(qm)

6. GSm← Produce Gold Standard(qm)

7. CRm,i,k ← Cluster(RTLm, ci, k)

8. MoJom,i,k ← Compute MoJo(CRm,i,k,, GSm)

9. Average MoJoi,k ← 1
m

∑
m
MoJom,i,k

10. Break if local minimum(Average MoJoi,m)

11. Return min(Average MoJoi,k)
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The measure that we choose to optimize is the MoJo distance averaged over all the trace

queries in a given dataset (lines 9-10). That is, if a local minimum of Average MoJoi,k

is reached for the clustering algorithm ci at granularity level k, then the optimal clustering

setting is found and min(Average MoJoi,k) is returned. The procedure will repeat for

the next evaluation cycle with a new clustering algorithm ci+1. It is necessary to point out

that k is looped from 2. This is because the gold standard that we use consists of 2 clusters

(e.g., Figure 4.2-a). Thus, a local minimum near the lower bound of k is considered to be

an acceptable solution to our particular optimization problem. Figure 4.3 plots the average

MoJo values for all the three traceability datasets. For iTrust, Average MoJo hits a mini-

mum when using SL to produce 7 clusters. For eTour, SL achieves the best performance

at 7-8 clusters. For CM-1, a local minimum of Average MoJo is obtained when 9 clusters

are generated by either CL or SL. From our analysis, SL turns out to be the best candi-

date for realizing the cluster hypothesis in traceability. The optimal clustering granularity

of SL is found to be k ∈ [7, 9] across the three datasets. These findings differ from the

previous observations that k-means, bisecting, and HAC result in similar clusterings when

k equals to 5-6 or higher [69]. We speculate this difference is attributed to the different

evaluation methods employed: while we externally assess how close the clusterings are to

a gold standard, the study in [69] internally evaluates how close the clusterings are to each

other.

To further validate our procedure, we apply the optimal clustering settings (i.e., SL with

k=8) to trace all the requirements from each dataset. For every trace query, the resulting 8

SL clusters are arranged in a descending order based on their recall values (the percentage
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MoJo Analysis for Comparing the Clustering Algorithms
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of correct links they contain). The recall values of all the clusters at the same rank (1st,

2nd, etc.) are then averaged over all the trace queries. Figure 4.4 shows the results. It

is apparent that, when clustered using the optimal settings, the retrieved traceability links

are effectively separated in high-quality (high-recall) and low-quality (low-recall) groups.

For example, the top-3 clusters in CM-1 contain almost all the correct links. These results

provide evidence supporting the findings previously reported in [115, 132], stating that

there existed an optimal clustering mechanism such that if the IR system were able to

optimize the clustering settings, the mechanism would always perform better than baseline

document retrieval.

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

High Quality Clusters

R
ec

al
l

iTrust eTour CM-1

Figure 4.4

Traceability Link Clusters Arranged Based on Recall

4.5.2 Determining the Quality of Link Clusters

In Figure 4.4, the cluster quality is judged by using the answer set available for each

dataset. However, under non-experimental settings where no answer set is available, a
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new strategy for determining cluster quality is needed. Automated support for this deter-

mination is challenging, e.g., the quality of clusters were determined manually in [115].

We investigate three heuristics to distinguish between high- and low-quality clusters, given

the cluster hypothesis holds. These heuristics are motivated by dynamic clustering [115],

which emphasizes that the clusterings should be query-specific. Since traceability link

clustering in our approach is dynamic, each cluster can be characterized via certain link

based on the similarity to the trace query.

• MAX (maximum similarity): The link with the maximum TFIDF similarity to the
trace query is selected as a representative for the cluster. Clusters are then arranged
based on their MAX representatives.

• AVE (average similarity): Clusters are sorted based on the average TFIDF similarity
of their links to the query.

• MED (median similarity): Clusters are sorted based on the median TFIDF similarity
of the links to the query.

4.5.2.1 Evaluation Method

The link clusters quality hinges on their recall values since automated traceability

strives to achieve the highest possible recall. Similar to the iterative procedure decribed

earlier, we evaluate the heuristics { MAX, AVE, MED } by closely monitoring the drop

rate in recall each time the links from a low-quality cluster are discarded. The heuristic that

maintains a consistently high recall during the removal of lowest-quality clusters is then

considered to be an effective strategy.

4.5.2.2 Result Analysis

Figure 4.5 compares how recall drops when different heuristics are applied. In all three

datasets, MAX is the most successful strategy for determining the quality of link clusters.
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In other words, it is adequate to use each clusters link that is the most similar to the query

to distinguish high- and low-quality clusters. The results in Figure 4.5 also show that

the number of lowest-quality clusters to remove varies from dataset to dataset. When the

clusters are arranged using MAX, discarding the links from the bottom 3 clusters has little

effect on recall in iTrust and eTour. CM-1, a considerable drop in recall is observed if

the 6th bottom-ranked cluster is removed. Although CM-1s MAX curve represents a best

case scenario, we believe removing 3 lowest-quality clusters is a satisfactory answer to our

research question. The links in these clusters are mostly false positives, so discarding them

could significantly improve candidate link generation.

4.5.3 Generating Candidate Links

Two tests are performed at this stage. First, it is crucial to compare the candidate links

generated via our clustering-based approach with those produced by the baseline pruning

strategy. This test evaluates the enhancement effect (Figure 4.1). Second, two styles of

presenting the newly generated candidate links are assessed:

• ABS (using absolute similarity scores): The candidate links are ordered based on the
similarity to the trace query regardless of their clusters.

• MAX (preserving cluster boundaries): The candidate links are displayed in their
respective clusters, which in turn are arranged by their MAX representatives. Inside
each cluster, the links are ranked according to theTFIDF similarity to the trace query.

4.5.3.1 Evaluation Method

For the first test on enhancement effect, standard recall and precision metrics are used.

For the second test, these primary metrics are inappropriate because the two styles are

applied to display the same set of candidate links (i.e., the links contained in the 5 highest-
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Using different representatives to determine the quality of clusters.
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quality SL clusters judged by the MAX heuristic). We therefore resort to MAP (mean

average precision), a secondary measure useful in evaluating the performance of tracing

methods [237]. Intuitively, the higher the MAP, the closer the correct links are to the top

of the candidate link presentation. The presentation with a higher MAP is superior as the

links are easier to browse [237].

4.5.3.2 Result Analysis

Figure 4.6 and Figure 4.7 show the recall and precision comparisons respectively.

Note that the baseline and our clustering-based enhancement use different units in filter-

ing out false positives. In order to reconcile this difference, the thresholds in Figure 4.6

and Figure 4.7 are specified by following the baseline pruning strategy, namely, the top

(x × 100)% of the most similar links in the ranking defined by the links TFIDF scores,

where x = {1.0, 0.9, 0.8, · · · , 0.4}. To accommodate the analysis of cluster-based fil-

tering proposed in our approach, the size of each cluster is also depicted through the

dotted vertical cluster boundaries line in Figure 4.6 and Figure 4.7. The bold dotted

line shows the cutoff point for selecting candidate links in our approach, i.e., discard-

ing the links from the 3 lowest-quality clusters and keeping the remaining as the can-

didate links. The recall and precision comparisons clearly show that our approach out-

performs the baseline. To examine whether the difference is statistically significant, we

use Mann-Whitney test (α = .05). Mann-Whitney is a non-parametric test. It does

not make any assumption about the distribution of the data [48]. The test results show

that, in all three datasets, our clustering-based approach performs significantly better than
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the baseline pruning method, with < recall, precision > p-values of < 0.043, 0.018 >,

< 0.036, 0.046 >, and < 0.018, 0.034 > for iTrust, eTour, and CM-1 respectively. This

leads us to conclude that our approach significantly enhances candidate link generation for

automated requirements traceability.

Figure 4.8 shows the MAP values when the two presentation styles, ABS and MAX,

are compared. The results imply that ABS slightly outperforms MAX in all three datasets;

however, the improvement is significant only in eTour (p=0.046). This finding raises some

interesting issues in how to best present the candidate links to the human analyst. While

our results seem to suggest that the traditional ranked-list display (ABS) contains more

correct links on the top, preserving cluster boundaries (MAX) has shown to be valuable in

improving the understandability and usability of candidate traceability links [69]. We are

currently carrying out pilot studies with our TraCter tool [170] to further investigate the

presentation factor and its impact on assisted requirements tracing [62].

The MAP analysis completes our experimental inquiry of seeking answers to the set of

our research questions. The results can be summarized as follows.

• The cluster hypothesis holds in traceability.

• Single-link (SL), at the k=8 clustering granularity, represents a good candidate mech-
anism for fulfilling the potential suggested by the cluster hypothesis.

• The quality of clusters can be adequately inferred by their maximum similarity
(MAX) to the trace query, and the 3 lowest-quality clusters contain such a high den-
sity of false positives that discarding them significantly improves the overall quality
of the candidate link generation.

• Displaying the candidate links in an absolute similarity (ABS) manner facilitates the
browsability aspect of the automated tracing results.
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4.5.4 Threats to Validity

As is the case for most controlled experiments, our investigation into the cluster hy-

pothesis in traceability is performed in a restricted and synthetic context. We discuss here

some of the most important factors that must be considered when interpreting the results.

The construct validity [260] of our study can be affected by the use of a gold standard to

operationally measure the goodness of clustering results. The gold standard that we devise

assumes that an optimal decomposition of the traceability link space should have only two

clusters, thus effectively splitting the correct links and incorrect ones into perfect-quality

and zero-quality groups respectively. This assumption is based on an extreme leverage of

the cluster hypothesis to the automated tracing problem. At the other extreme, every re-

trieved link can be its own cluster or only a couple of correct links can form a cluster which

is separated from other links; however, such decompositions offer little value to automated

tracing solutions. Our operationalization of goodness represents only one of the gauges

to search for acceptable approximations to the clustering with constraints problem, but a

practically useful one. In cases that other clustering solutions are desired (e.g., the cluster

size should be adjusted to 7 − 2 in order to take human usability into consideration [69]),

we argue that the procedure in Section 4.4.1 may be applied incrementally to help find

other optimal clustering settings. One of the internal validity [260] threats relates to the

sequential examination of the three enhancement steps in our approach (Figure 4.1). The

test of the cluster-quality determination heuristics, for example, is executed by applying

the optimal clustering mechanisms discovered in the previous step. While we feel that our
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execution configurations are logical, caution must be taken in interpreting our findings as

a whole rather than separately.

In terms of external validity, two of the projects are developed by students and are not

necessarily representative of all systems. In particular, proprietary software products are

likely to exhibit different characteristics. We also note that our chosen traceability datasets

are of medium size, which may raise some scalability concerns. Nevertheless, we believe

the use of three datasets from different domains while incorporating both requirements-to-

source-code and requirements-to-design traces helps mitigate related threats. We present

an industrial case study in the next section in order to triangulate our findings. Other

threats might stem from specific design decisions, such as the preprocessing indexer used,

the TFIDF similarity measure computed, and so on.

Finally, in terms of reliability [260], we conduct all the experiments on open-source

projects using procedures, algorithms, and measures completely described in this chap-

ter. Moreover, our implementations are available upon request. We therefore believe it is

possible to independently replicate our results.

4.6 Evaluation Study

The experimental study presented in this chapter uses open-source projects to answer

our research questions in a quantitative and precise way. To further investigate the benefits

of our approach, we conduct an exploratory case study [260] by applying the results to

WDS, our industrial proprietary software system deployed in the workforce development
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domain. The objective is to assess the usefulness and the scope of applicability of our

approach, and more importantly, to identify areas for improvement.

4.6.1 Background

The development team of WDS describes its requirements practice as a goal-oriented

and agile process. While the high level business goals shall be fulfilled, the changes to

low level design and implementation are also embraced. Currently, WDS employs a com-

mercial state-of-the practice issue tracking system to manage the traceability information.

Although there is no immediate need to invest in new techniques, the WDS team is very

interested in exploring how automated tracing methods like ours can help improve their

practice, especially for handling volatile requirements.

4.6.2 Results

Table 4.1 shows the results obtained by applying our approach to the 6 WDS require-

ments. For each requirement, the table compares the performance of three tracing methods:

term-based retrieval, baseline pruning, and our clustering based enhancement. Note that

these 6 requirements are processed by using the same procedures, algorithms, and con-

figurations as described earlier. It is encouraging to realize that our approach greatly out-

performs the baseline in generating the candidate traceability links for three requirements:

Req3, Req4, and Req6. Not only is recall maintained at a high level (93%) by using our

approach, but precision is markedly increased. This provides further evidence confirming

the validity of the cluster hypothesis in traceability. Meanwhile, the result increases our

confidence in the generalizability of our optimal clustering findings. For Req1, even the
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initial IR-based tracing results in a relatively low recall (84%). Although the clustering-

based enhancement completely matches the recall level, this situation does exploit one

of the limitations of our approach. Being query-specific, our approach does not provide

much support on the recall side. Requirements like Req1 contributes to the hard-to-retrieve

traces problem [94], which needs solutions beyond the basic term − matching mecha-

nism. For example, replacing the original query with a new set of query terms is proposed

in [94]. Even though this shows that clustering on the query side can be useful, the scope

of our approach is currently limited on the retrieval and filtering side.

Among the WDS requirements under study, Req2 has the greatest number of correct

traceability links, meaning that its traces are spread all over the link space. It is therefore

difficult for any pruning or filtering mechanisms not to throw out some of the correct links.

However, this does illuminate the value of our choosing a 2-cluster extreme (Figure 4.2-a)

as a gold standard. In practice, when Req2 is traced, a successful dividing of the traceabil-

ity links into perfect-quality and zero-quality clusters can be of great help. A closer look

at Req2 reveals that it is a non-functional requirement (NFR) describing security-related

coerns which are addressed by a large number of artifacts in WDS’s code base. Tracing

NFRs has received growing research attention in recent years [42]. It is therefore interest-

ing to exploit the special nature of NFRs to further improve our approach. As far as Req5

is concerned, clustering has no effect

As far as Req5 is concerned, clustering has no effect on candidate link generation. This

is clearly an exception to the general trend in Table 4.1, which shows that our approach im-

proves both recall and precision over the baseline. It turns out that the two Java classes that
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Table 4.1

Results of Applying our Approach to Business Requirements

Recall Precision

Requirements Correct links Retrieved Baseline Enhancement Retrieved Baseline Enhancement

Req1 25 0.84 0.68 0.84 0.06 0.08 0.10
Req2 330 0.92 0.80 0.85 0.77 0.84 0.89
Req3 14 0.93 0.50 0.93 0.08 0.07 0.13
Req4 22 0.00 0.73 0.95 0.06 0.08 0.11
Req5 17 0.94 0.82 0.82 0.11 0.20 0.20
Req6 20 0.95 0.80 0.95 0.08 0.10 0.12

are incorrectly filtered out implement general utility functions DateUtil.java and EmailU-

til.java. In the software clustering literature, these are known as omnipresent objects [255]

and need to be handled separately from regular data objects. Thus, a potential improvement

to our approach is to take into account other types of information, such as structural [255]

and runtime [75] information, to produce more reliable and robust clusterings.

4.7 Conclusions

In this chapter, we have proposed an approach to improving the performance of IR-

based automated tracing by examining the cluster hypothesis. The approach is presented

through a set of detailed procedures. Three open-source datasets from different application

domains are investigated to discover optimal settings for these procedures. We further eval-

uate our approach through a case study that helps identify the limitations of our approach

and the avenues for future research. The study results show that our approach outperforms

the baseline, but still has more room for improvement. It is imperative to mention that

as long as the challenge of achieving a 100% recall and precision is still standing, the
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problem of automated tracing remains unsolved. More research is required on different

aspects of the problem to achieve the desired quality levels for automated tracing tools to

be successfully deployed in industrial settings.
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CHAPTER 5

REFACTORING SUPPORT

In this chapter, we hypothesize that the distorted traceability tracks of a software sys-

tem can be systematically re-established through refactoring, a set of behavior-preserving

transformations for keeping the system quality under control during evolution. To test our

hypothesis, we conduct an experimental analysis using three requirements-to-code datasets

from various application domains. Our objective is to assess the impact of various refac-

toring methods on the performance of IR-based automated tracing tools.

5.1 Introduction

As projects evolve, new and inconsistent terminology gradually finds its way into the

system’s taxonomy [153], causing topically related system artifacts to exhibit a large de-

gree of variance in their lexical contents [9, 81]. This phenomena is known as the vocabu-

lary mismatch problem and is regarded as one of the principal causes of poor accuracy in

retrieval engines [56].

A suggested solution for the vocabulary mismatch problem is to systematically recover

the decaying vocabulary structure of the system through refactoring. Refactoring refers to

a set of behavior-preserving transformations that improve the quality of a software system

without changing its external behavior [200]. These transformations act on the internal
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structure of software artifacts, including the nonformal and organizational features in the

system, leaving the system’s functionality intact [86]. Refactoring is now being advocated

as an essential step in software development. For example, in agile methods, refactoring

has already been integrated as a regular practice in the software’s life cycle [184]. In ad-

dition, refactoring tools, which support a large variety of programming languages, have

been integrated into most popular integrated development environments (IDEs), targeting

various quality aspects of software systems (e.g., increase maintainability, reusability, and

understandability) [29,86,131,137,171,186,187]. Motivated by these observations, in this

chapter, we hypothesize that certain refactoring methods will help to re-establish the sys-

tem’s vocabulary structure that often gets corrupted during evolution [153], thus improving

the retrieval capabilities of IR methods operating on that structure.

Refactoring can take different forms affecting different types of artifacts. Therefore,

testing our research hypothesis entails addressing several sub-research questions such as:

What refactoring methods improve trace retrieval quality? What refactoring methods have

more influence on the system’s traceability? How to evaluate such influence? How does

refactoring compare to other performance enhancement strategies in automated tracing?

And how to reverse any potential negative impact certain refactoring methods might have

on traceability? To answer these questions, we conduct an experimental analysis using

three datasets from various application domains. Our main objective is to explore system-

atic ways for enhancing the performance of IR-based automated tracing tools.
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5.2 IR-Based Automated Tracing

To understand the mechanism of IR-based automated tracing tools, we refer to the main

theory underlying IR-based trace link retrieval. In their vision paper, Gotel and Morris [99]

established an analogy between animal tracking in the wild and requirements tracing in

software systems. This analogy is based on reformulating the concepts of sign, track and

trace. A sign in the wild is a physical impact of some kind left by the animal in its sur-

roundings, e.g., a footprint. Figure 5.1-a shows a continuous track of footprints left by a

certain mammal. The task of the hunter is to trace animals’ tracks by following these signs.

In other words, to trace means basically to follow a track made up of a continuous line of

signs. Similarly, in requirements tracing, a sign could be a term related to a certain domain

concept, left by a software developer or a system engineer in a certain artifact. Figure 5.1-c

shows a continuous track of related words from the health care domain <Patient, Ill, Pre-

scription, Hospital>. The task of IR methods is to trace these terms to establish tracks in

system. These continuous tracks are known as links.

The availability of uniquely identifying marks, or signs, is vital for the success of the

tracing process. However, just as in the wild, tracks in software systems can get discon-

tinued or distorted due to several practices related to software evolution [76, 153]. In what

follows, we identify three symptoms related to code decay that might lead to such a prob-

lem. These symptoms include:
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Illustration of Sign Tracking.
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5.2.1 Missing Signs

A track can get discontinued when a concept-related term in a certain artifact is lost.

Figure 5.1-d shows how the trace link becomes discontinued when the word<Prescription>

is changed to <x>. This can be equivalent to a footprint being washed off by rain in the

wild (Figure 5.1-b).

5.2.2 Misplaced Signs

A track can also be distorted by a misplaced sign. For example, the word<Computer>,

which supposedly belongs to another track, is positioned in the track of Figure 5.1-d. In

the wild this is equivalent to a footprint implanted by another animal on the track of unique

footprints left by the animal being traced (e.g., Figure 5.1-b shows a bird’s footprint left on

the mammal’s track in Figure 5.1-a).

5.2.3 Duplicated Signs

This phenomenon is caused by the fact that some identical or similar code fragments

are replicated across the code. These fragments are known as code clones [31]. In our

example, this can be equivalent to a track branching into some other module that contains

a word similar to one of the signs of the trace link identified in Figure 5.1-c. Some animals

adopt this strategy in the wild to confuse their predators by duplicating their footprints in

different directions at different periods of time.
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5.3 Refactoring

Refactoring was initially introduced by Opdyke and Johnson as a systematic means for

aiding evolution and reuse in legacy software systems [201]. While it can be applied to

various types of artifacts, such as design and requirements, refactoring is mostly known

for affecting source code [184]. Program refactoring starts by identifying bad smells in

source code. Bad smells are “structures in the code that suggest the possibility of refac-

toring” [86]. Once refactoring has been applied, special metrics can be used to determine

the effect of changes on the quality attributes of the system, such as maintainability and

understandability [244].

Refactoring can be manual, semi, or fully automated. Manual refactoring requires

software engineers to synthesize and analyze code, identify inappropriate or undesirable

features (code smells), suggest proper refactorings for these issues, and perform poten-

tially complex transformations on a large number of entities manually. Due to the high

effort associated with such a process, the manual approach is often described as repeti-

tive, time-consuming, and error-prone [182]. The semi-automated approach is what most

contemporary IDEs implement. Under this approach, refactoring activities are initiated

by the developer. The automated support helps to carry out the refactoring process, such

as locating entities for refactoring and reviewing refactored results. In contrast, the fully

automated approach tries to initiate refactoring by automatically identifying bad smells in

source code and carrying out necessary transformations automatically. However, even in

fully automated tools, the final decision whether to accept or reject the outcome of the

refactoring process is left to the human [131].
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Deciding on which particular refactoring to apply to a certain code smell can be a

challenge. In fact, applying arbitrary transformations to a program is more likely to cor-

rupt the design rather than improving it [200]. However, there is no agreement on what

transformations are most beneficial and when they are best applied. In general, such deci-

sions should stem from the context of use, such as the characteristics of the problem, the

cost-benefit analysis, or the goal of refactoring (e.g., improving robustness, extensibility,

reusability, understandability, or performance of the system) [182,184]. In automated trac-

ing, the main goal of adopting refactoring is to improve the system’s vocabulary structure

in such a way that helps IR-based tracing methods to recover more accurate lists of candi-

date links. Based on that, we define the following requirements for integrating refactoring

in the IR-based automated tracing process:

• Altering nonformal information of the system: As mentioned earlier, IR-based trac-
ing methods exploit nonformal information embedded in the textual content of soft-
ware artifacts [8]. Therefore, for any refactoring to have an impact on IR-based
automated tracing methods, it should directly affect the system’s textual content.

• Coverage: Traceability links are often spread all over the system, linking a large
number of the system’s artifacts through various types of traceability relations [231].
Therefore, statistically speaking, to have a noticeable impact on the performance,
adopted refactorings shall affect as many software entities as possible.

• Automation: Since the main goal of automated tracing tools is to reduce the manual
effort, any integrated refactoring should allow automation to a large extent. For any
refactoring process to be considered effort-effective, it should provide automated
solutions for code smell detection and applying code changes [85]. Automating
these two steps will help to alleviate a large portion of effort usually associated with
manual refactoring.

• Granularity level: In all of our experimental datasets, traceability links are estab-
lished at class granularity level (i.e., requirements-to-class) [121]. This limits our
analysis in this chapter to refactorings that work within the class scope (e.g., MOVE

METHOD and EXTRACT METHOD), rather than refactorings that affect the class
structure of the system (e.g., REMOVE CLASS or EXTRACT CLASS). Enforcing
this requirement ensures that our gold-standard remains unchanged after applying
various refactorings. 127
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Based on these requirements, we identify three categories of refactoring that might

have an impact on the performance of IR-based tracing methods. These categories include:

refactorings that restore, remove, and move textual information in the system, represented

by RENAME IDENTIFIER, EXTRACT METHOD, and MOVE METHOD refactorings respec-

tively. These particular refactoring methods have been reported to be among the most

understood and commonly used refactorings in practice [3, 66, 187, 190]. In addition, the

research on the automation of these particular refactorings have noticeably excelled in the

past few years, producing a wide selection of tools that support a large number of program-

ming environments in a scalable manner [131, 189, 219, 245]. Therefore, we select these

particular refactorings as a target of our investigation in this chapter. In what follows we

describe each of these refactorings in greater detail.

5.3.1 Restoring Information

Refactoring methods under this category target the degrading vocabulary structure of

source code [9, 153]. The main goal is to restore the domain knowledge that often gets

lost over iterations of system evolution. In general, any refactoring that results in adding

new words to the set of the system’s vocabulary can be classified under this category. For

example, refactorings such as ADD PARAMETER or INTRODUCE EXPLAINING VARIABLE

introduce new variables or parameters, thus potentially new domain-related knowledge.

However, the most popular refactoring in this category is RENAME IDENTIFIER (RI) [3,66,

187,190]. As the name implies, this transformation refers to simply renaming an identifier

(e.g., a variable, class, structure, method, or field) to give it a more relevant name [86].
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RENAME IDENTIFIER is expected to target the Missing Sign problem affecting traceability

methods.

As mentioned earlier, to be considered in our analysis, refactoring methods should

provide support for automatic detection of code smells they target. In our analysis, we

refer to the literature of source code abbreviations and acronyms expansion to identify

procedures for capturing opportunities for RENAME IDENTIFIER refactoring [35,150,242].

In particular we apply the following procedure:

1. Identifiers are first divided into their constituent parts for analysis [150].

2. Identifiers with less than 4-character length. These are usually acronyms or abbrevi-
ations. In that case, the long form is used. For example, the parameter HCP in our
health care system is expanded to HealthCarePersonnel. If the identifier is less than
4 characters but it is not an acronym nor an abbreviation, then it is renamed based on
the context.

3. Identifiers which have a special word as part of their names. For example, the vari-
able PnString is expanded to PatientNameString.

4. Identifiers with generic names. For example, in our health care system, the method’s
name import is expanded to importPatientRecords.

The main objective of this procedure is to achieve consistency. During multiple iter-

ations of software evolution, slightly different abbreviations might be used to refer to the

same domain concept, causing a mismatch between the vocabulary used in source code

and that used in other software artifacts [152,153]. This phenomenon is often described as

a very common problem in software maintenance [61, 144, 150]. The proposed procedure

for renaming identifiers tries to eliminate this inconsistency in the system by using one

consistent form, whether an abbreviation or an extended form, to refer to the same domain

concept. In our analysis, we use the extended full-word form. Our decision is based on
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the converging evidence from related literature which indicates that, in the long run, ab-

breviations impact comprehension negatively [105, 239]. In contrast, full-word identifiers

often lead to the best comprehension [51, 152]. In addition, using the long form keeps

identifiers’ names in sync with their functionality, which results in an overall improvement

in code quality, and thus, the accuracy of IR methods working with these identifiers.

We implement our procedure to find candidates for renaming in our datasets. Once

the candidate identifiers for renaming have been identified, the refactoring tool available

in ECLIPSE 4.2.1 IDE is used to carry out the renaming process. This will ensure that

all corresponding references in the code are updated automatically. Finally, the code is

compiled to make sure no bugs were introduced during the process. It is important to

point out that at the current stage of the research, choosing new identifiers’ names is still

a manual task, carried out by our researchers, using keywords available in the system’s

documentation, based on their understanding of the system’s application domain, and the

particular functionality of the identifier being renamed.

Table 5.1

Refactoring Methods Used in our Analysis

Refactoring Code Smell Tracing Problem Tool Support Manual Effort

RENAME IDENTIFIER Decaying vocabulary Missing signs ECLIPSE Verifying candidates for renaming
Selecting identifiers’ names

MOVE METHOD Feature envy Misplaced sign Jdeodorant Verifying move-method candidates
ECLIPSE Verifying the results

EXTRACT METHOD Code clones Duplicated signs SDD Verifying code clone candidates
ECLIPSE Selecting extracted method’s name

Selecting host class
Verifying the results
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5.3.2 Moving Information

This category of refactoring methods is concerned with moving code entities between

system modules. The goal is to reduce coupling and increase cohesion in the system,

which is a desired quality attribute of Object-Oriented design [93]. Refactorings under this

category provide a remedy against the Feature Envy code smell. An entity has Feature

Envy when it uses, or being used by, the features of a class other than its own (different

from where it is declared). This may indicate that the entity is misplaced [86].

In our experiment, we adopt MOVE METHOD (MM) refactoring as a representative

of this category. By moving entities to their correct place, this particular refactoring is

expected to target the Misplaced Sign problem mentioned earlier. To identify potentially

misplaced entities, we adopt the strategy proposed by Tsantalis and Chatzigeorgiou [245],

in which they introduced a novel entity placement metric to quantify how well entities

have been placed in code. This semi-automatic strategy starts by identifying the set of the

entities each method accesses (parameters or other methods). Feature Envy code smell in-

stances are then detected by measuring the strength of coupling that a method has to meth-

ods belonging to all foreign classes. The method is then moved to the target foreign class in

such a way that ensures that the behavior of the code will be preserved. This procedure has

been implemented as an ECLIPSE plug-in (Jdeodorant 1) that identifies Feature Envy in-

stances and allows the user to apply the refactorings that resolve them. However, despite of

the high degree of automation, this process can still be regarded as semi-automatic [245].

In particular, verifying or rejecting the MOVE METHOD candidates suggested by the tool,

1http://www.jdeodorant.org/
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and making sure that moving a method does not introduce any bugs in the system, are still

manual tasks. In our analysis, we only consider misplaced methods. Move Attribute refac-

toring is excluded based on the assumption that attributes have stronger conceptual binding

to the classes in which they are initially defined, thus they are less likely than methods to

be misplaced [245].

5.3.3 Removing Information

These refactorings remove redundant or unnecessary code in the system. A popular

code smell such refactorings often handle is Duplicated Code. This code smell is usually

produced by Copy-and-Paste programming [134], and indicates that the same code struc-

ture appears in more than one place. These duplicated structures are known as code clones

and are regarded as one of the main factors for complicating code maintenance tasks [181].

Exact duplicated code structures can be detected by comparing text [86]. However, other

duplicates, where entities have been renamed or the code is only functionally identical,

need more sophisticated techniques that work on the code semantics rather than its lexical

structure [68].

The most frequent way to handle code duplicates is EXTRACT METHOD (XM) refac-

toring [176, 256]. In particular, for each of the duplicated blocks of code, a method is

created for that code, and then all the duplicates are replaced with calls to the newly ex-

tracted method. When the duplicates are scattered in multiple classes, the new extracted

method is assigned to the class that calls it the most. By removing potentially ambigu-

ous duplicates, EXTRACT METHOD is expected to target the Duplicated Sign problem of
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software artifacts. In our analysis, we use the duplicated code detection (SDD) 2 ECLIPSE

plug-in to detect code clones. EXTRACT METHOD refactoring available in the ECLIPSE

4.2.1 IDE is then used to refactor candidate clones. In particular, the user selects the code

fragment to be extracted from the list of candidate clones returned by the tool, and ECLIPSE

will ask for a method name and a class to host the newly extracted method. A method name

is selected based on the context of the code. Once the method is created, the user is re-

sponsible for replacing all clone instances with a call to the new method and making sure

that no bugs are introduced by this process.

Table 5.1 summarizes the categories of refactoring methods introduced in this section,

including the code smells they target, traceability problems they impact, the tool support

available, and a summary of the manual effort required to carry out each refactoring.

5.4 Methodology and Research Hypothesis

Three datasets were used to conduct the experiment in this chapter including: iTrust,

eTour, and WDS. Our experimental procedure can be described as a multi-step process as

follows:

5.4.1 Refactoring

Initially the system is refactored using various refactoring methods mentioned earlier.

The goal is to improve the system lexical structure before tracing. The results of applying

different refactorings over our three experimental datasets. The table shows the number of

entities affected by refactoring in each dataset (e.g number of moved or extracted methods

2http://wiki.eclipse.org/Duplicated code detection tool (SDD)
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and number of renamed identifiers), the number of affected classes in each system, and the

number of affected classes in the gold-standard, or classes that are part of a trace link in

our answersets (C’).

5.4.2 Retrieval

IR methods are used to identify a set of traceability links by matching the traceability

query’s profile with the artifacts’ profiles in the software repository. In our experiment,

we use Vector Space Model with TFIDF weights as our experimental baseline. TFIDF

is a popular term-weight scheme in VSM which has been validated through numerous

traceability studies as an experimental baseline (e.g., [121, 172]).

5.4.3 Evaluation

At this step, different evaluation measures (Sec. 1.5 ), are used to assess the different

aspects of the performance. Performance of each dataset after applying a certain refac-

toring, in comparison to the baseline (VSM), is presented as a precision/recall curve over

various threshold levels (< .1, .2, ..., 1 >) [121]. Wilcoxon Signed Ranks test is used to

measure the statistical significance of the results. We use α = 0.05 to test the significance

of the results. Note that different refactorings are applied independently, so there is no

interaction effect between them.

5.5 Results and Discussion

This section starts by describing our analysis results. In particular, the effect of different

refactoring methods on the performance in terms of preliminary measures (precision and
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recall) and browsability measures (MAP (Eq. 1.4) and DiffAR (Eq 1.5)) is described. The

section then proceeds by further exploring the effect of each refactoring method in greater

detail. In particular, we compare the performance of methods that have positive impact on

traceability with other related techniques in automated tracing, and explore strategies for

mitigating any potential negative impact certain refactorings methods might have on the

performance.

Table 5.2

Wilcoxon Signed Ranks Test results (p-values at α = .05) for Primary Performance
Measures

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Refactorings
RI (-2.395, <.010) (-2.803, <.005) (-2.701, <.007) (-2.803, <.005) (-2.090, ¡.05) (-2.803, <.005)

MM (-.405, .686) (-1.599, .110) (-1.753, .080) (-.663, .508) (-1.572, .116) (.000, 1.000)

XM (-2.803, <.005) (-2.803, <.005) (-2.701, <.007) (-2.803, <.005) (-2.803, <.005) (2.701, <.007)

MAP DiffAR MAP DiffAR MAP DiffAR
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Refactorings
RI (-.357, .721) (-1.732, .083) (2.380, <.010) (-1.414, .157) (-2.803, <.005) (-1.000, .317)

MM (-.653, .514) (.000, 1.000) (1.478, .139) (.000, 1.000) (-1.680 .093) (.000, 1.000)

XM (-2.803, <.005) (-2.842, <.005) (-2.809, <.005) (-2.803, <.005) (-2.803, <.005) (-3.051, <.005)

5.5.1 Analysis Results

Figure 5.10 shows the recall and precision curves of our three datasets after applying

RENAME IDENTIFIER (RI), MOVE METHOD (MM), and EXTRACT METHOD (XM), in

comparison to the VSM baseline. Statistical analysis over the results is shown in Table 5.2.
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In general, the results show that different refactorings vary in their impact on the perfor-

mance. In details, RENAME IDENTIFIER refactoring has the most obvious positive impact

on the results, affecting the recall significantly in all three datasets. In the iTrust dataset,

both precision and recall have improved significantly, achieving optimal recall levels at

higher thresholds. The same performance is detected in the eTour dataset, in which the

improvement in the recall and the precision over the baseline is statistically significant. In

the WDS dataset, the precision has dropped significantly with the significant increase in the

recall. This can be explained based on the inherent trade-off between precision and recall.

In this particular dataset, even though renaming identifiers has helped to retrieve more true

positives, it also retrieved a high number of false positives.

The results also show that MOVE METHOD refactoring has the least influence on the

performance. In all datasets no significant improvement in the recall or the precision is

detected. In fact, the performance after applying this particular refactoring is almost equiv-

alent to the baseline. In contrast, statistical analysis shows that EXTRACT METHOD has

resulted in a significant increase in the precision. However, when applied, it was no longer

possible to achieve high recall, hence the performance lines in Figure 5.10 stopped at re-

call of 66%, 61%, and 93% in iTrust, eTour, and WDS respectively. In general, In terms

of recall, the results show that removing redundant textual knowledge from the system has

caused a significant drop in the number of true links, taking the recall down to significantly

lower levels in all three datasets. The spike in the precision can be simply explained based

on the inherent trade-off between precision and recall.
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In terms of browsability, statistical analysis in Table 5.2 shows that both RENAME

IDENTIFIER and MOVE METHOD have no significant impact on the average DiffAR. How-

ever, EXTRACT METHOD seems to be achieving significantly better performance over

the baseline. In terms of MAP, Figure 5.2 shows the superior performance of EXTRACT

METHOD over other refactorings in comparison to the baseline. This behavior can be ex-

plained based on the fact that VSM retrieves the smallest number of links after applying

EXTRACT METHOD. However, even with lower recall, only a few false positives were sep-

arating true positives, with most of these true positives located toward the top the of list,

thus taking the precision of these links to higher levels, which in turn resulted in higher

MAP values.

MAP results also show the inconstant performance of RENAME IDENTIFIER across the

different datasets. In the iTrust, no significant difference in the performance is detected. In

contrast, in the eTour dataset, RENAME IDENTIFIER achieves significantly better perfor-

mance than the baseline and significantly worse performance in WDS. In addition, analysis

results show that MOVE METHOD does not have any significant impact on the MAP val-

ues, which is actually expected based on the fact that it does not have a significant impact

on the primary performance measures.

In general, our results suggest that RENAME IDENTIFIER refactoring has the most sig-

nificant positive effect on the results, improving the recall to significantly higher levels in

all three datasets. In contrast, EXTRACT METHOD has a significantly negative impact, tak-

ing the recall down to significantly lower levels in all three datasets, and MOVE METHOD

has no clear impact on the performance. Automated tracing methods emphasize recall
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Figure 5.2

MAP Values in iTrust, eTour and WDS after Applying Different Refactorings

over precision [121]. This argument is based on the observation that an error of commis-

sion (false positive) is easier to deal with than an error of omission (false negative). Based

on that, we conclude that RENAME IDENTIFIER refactoring has the most potential as a per-

formance enhancement technique for IR-based requirements-to-code automated tracing. In

what follows, the operation of each refactoring is discussed in greater detail.

5.5.2 Rename Identifier Effect

Our results suggest that restoring textual information has the most positive impact on

the system’s traceability. In particular, RENAME IDENTIFIER refactoring targets the vo-

cabulary mismatch problem in software artifacts, which seems to be the most dominant

problem affecting IR-based traceability tools [90]. In the automated tracing literature, the

vocabulary mismatch problem is often handled by using semantics to fill the textual gap

caused by poor coding habits [94, 121, 172]. In order to gain better insights into the oper-
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ation of RENAME IDENTIFIER; we compare its performance with the performance of two

semantic enhancement strategies including ESA (Sec. 3.2.4.1) and VSM-T (Sec. 3.2.2.1).

To compare the performance of these two techniques with RENAME IDENTIFIER, we

trace our datasets using both VSM with thesaurus support (VSM-T) and ESA, before ap-

plying RENAME IDENTIFIER refactoring, and compare their performance to the VSM

baseline after applying RENAME IDENTIFIER (VSM-RI). The results are shown in Fig-

ure 5.11 and Table 5.3. Results show that query expansion technique (ESA) was able to hit

almost a 100% recall at higher threshold levels in all datasets; however, the precision was

affected negatively due to the high number of false positives. In general, textual enrich-

ment of artifacts might have a positive influence on the recall, especially retrieving some

of the hard-to-trace requirements [94]; however, it has a significant negative impact on the

accuracy, which was reflected in the fast drop in the precision values at higher threshold

levels. In contrast, the results show that VSM with a domain-specific thesaurus support

was able to achieve a comparable performance to our refactoring-based approach; no sta-

tistically significant difference in terms of precision and recall was detected in all of our

three datasets.

To demonstrate the operation of these three different techniques we refer to the exam-

ple in Figure 5.3. This figure shows a true trace link between requirement 6.2.3, which

describes a basic forgotten password recovery functionality, and the method FP OnClick,

which implements this particular requirement. Figure 5.4 shows the refactored method

after applying our RENAME IDENTIFIER procedure described in Section 5.3.1. Figure 5.5

shows a snapshot of our domain-specific thesaurus. Basically, entries were added to handle
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abbreviations and basic domain-specific synonymy relations. Figure 5.6 shows the query

expansion terms that have been added after applying ESA to both ends of the trace link.

In particular, the link has been expanded with several unrelated terms, extracted from the

general purpose knowledge source. For example, the list of semantically related terms for

the term <forget> from requirement 6.2.6 includes many domain irrelevant terms such

as <bury, leave>. This explains the high noise-to-signal ratio returned by this method,

causing the retrieval of a large number of incorrect links.

Table 5.3

Wilcoxon Signed Ranks Test results (p-values at α = .05) for Query Expansion and Sign
Preserving Techniques

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Technique
VSM-T (-.051, .959) (-1.599, .110) (-.652, .515) (-.178, .859) (-1.478, .139) (-.866, .386)

ESA (-2.490, <.05) (-2.380, <0.05) (-2.803, <.005) (-2.701, <.05) (-2.842, <.005) (-3.051, <.005)

Recall Precision Recall Precision Recall Precision
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Technique
Summarization (-.357, <.005) (-2.842, <.005) (-3.051, <.005) (-2.803, <.005) (-2.803, <.005) (-2.090, <.01)

Labeling (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0) (0, 1.0)

5.5.3 Handling Code Clones

A surprising observation in our analysis is that removing redundant information from

software artifacts has a negative impact on the performance of IR-based automated tracing

tools. This suggests that code clones actually serve a positive purpose for traceability link
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6.2.3 Forget Password
The system should provide a functionality for recovering user’s password. New password should be sent to the user’s registered

email.

(a) Requirement 6.2.3

1. public bool FP OnClick(string uName)

2. {

3. If(validteUsrNm(uName));

4. stEmail = getUsrEml(uName);

5. stPwd = genRndPWD();

6. sendPwd(stEmail, stPwd);

7. return true;

8. else Error =”Invalid Credentials”;

9. return false;

10. }

(b) Method FP OnClick

Figure 5.3

A Trace Link between Requirement 6.2.3 and Method FP OnClick

1. public bool ForgetPassword OnClick(string userName)

2. {

3. If(validteUserName(userName));

4. stEmail = getUserEmail(userName);

5. stPasswordd = generateRandomPassword();

6. sendPassword(stEmail, stPassword);

7. return true;

8. else Error =”Invalid Credentials”;

9. return false;

10. }

Figure 5.4

Applying RENAME IDENTIFIER on Method FP OnClick
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• pwd: password

• credential: email, password

• usr: user

Figure 5.5

Domain Thesaurus Support

• credential: certificate, password, email

• validate: formalize, formalize, corroborate

• password: watchword, word, parole, countersign

• recover: retrieve, find, regain, recuperate, reclaim

• forget: bury, block, blank out, leave

Figure 5.6

ESA Query Expansion

recovery. However, there is a conventional wisdom that code cloning is generally a bad

development practice. From a refactoring perspective, code clones are considered a code

smell [17]. They increase the maintenance cost and the error proneness of the code as

inconsistent changes to code duplicates can lead to unexpected behavior. Therefore, code

clones have to be refactored whenever detected [139, 219].

To mitigate the impact of removing code clones on the system traceability, we suggest a

sign-preserving treatment to reverse the negative effect of EXTRACT METHOD refactoring.

Applying this treatment, whenever a redundant code (a code clone) is removed, appropri-

ate comments that describe that code can be automatically inserted to fill the textual gap

left by refactoring that particular code. This can be achieved by utilizing automatic tech-

niques to generate descriptions for source code [126]. Several techniques for code labeling
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and summarization have been introduced in the literature [53, 109, 126]. Next we experi-

ment with two commonly used techniques, at different levels of complexity, for preserving

traceability signs.

5.5.3.1 Code Summarization

Refers to the creation of a shortened version of a computer program by capturing and

preserving the subject matter of the code [126]. Summarization is often performed with the

objective of producing meaningful summaries of source code to aid program comprehen-

sion [109]. To generate code summaries of code clones we use Latent Semantic Indexing

(LSI) [60], a technique that is used very often for automatically extracting summaries of

natural language. In particular, we adopt the approach proposed by Haiduc et al. [109]

to extract the most important terms in a certain code. This approach has been shown to

achieve high correlation with human-generated summaries [109]. The process starts by in-

dexing the source code corpus at the method level. The cosine similarity is then computed

between the code clone’s profile and each of the terms in the corpus in the LSI-reduced

space. The corpus terms are then ranked in decreasing order based on their similarity with

the code clone. The summary is then constructed by considering the top N terms in the

ranked list.

5.5.3.2 Code Labeling

Refers to the extraction of a set of representative words for a certain code element.

A simple code labeling can be achieved by indexing the redundant code (removing stop-

words, splitting code identifiers into their constituent words, and performing stemming [53]).
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The resulting words are then added as comments to replace the removed code. The term

labeling stems from the fact that no human-like meaningful descriptions are generated;

instead, just discrete words (labels) are extracted to facilitate information retrieval. Fig-

ure 5.8-a, b show the outcome of applying the code summarization procedure and the code

labeling procedure respectively over the code clone shown in Figure 5.7.

To evaluate the effectiveness of these two techniques in preserving traceability signs

we perform missing traceability sign analysis. In particular, we calculate the percentage

of lost effective signs when removing code clones. We define an effective sign as a term

or a keyword that contributes to a trace link (appears in both ends of the traceability link).

Figure 5.9 shows the percentage of lost traceability signs in iTrust, eTour and WDS after

applying EXTRACT METHOD (XM), and after applying code labeling and code summa-

rization techniques(N=7). The figure shows that the indexing-based code labeling was

actually more successful than code summarization in preserving a large number of the

original signs lost after removing code clones. The best performance of the code summa-

rization technique was achieved at (N=7). The poor performance of code summarization

can be explained based on the fact that size of a redundant code is not sufficient to pro-

duce meaningful summaries. For example, often the redundant code is just a part of a

method. Such code fragments usually lack valuable information that can be useful to the

summarization process. For instance, in our example in Figure 5.8-a, the code clone does

not include the method’s signatures, which has been found to add a significant information

value to the generated summaries [53, 109, 234]. These findings come actually aligned
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1. try {

2. conn = factory.getConnection();

3. ps = conn.prepareStatement(“SELECT * FROM NDCodes, OVMedication, OfficeVisits ”

4. + “WHERE NDCodes.Code=OVMedication.NDCode AND OVMedication.VisitID=OfficeVisits.ID ”

5. + “AND PatientID=? AND ((DATE(?) < OVMed.EndDate AND DATE(?) > OVMed.StartDate)”

6. + “OR (DATE(?) > OVMedication.StartDate AND DATE(?) < OVMedication.EndDate ) OR ”

7. + “(DATE(?) <= OVMedication.StartDate AND DATE(?) >= OVMedication.StartDate)) ”

8. + “ORDER BY VisitDate DESC”);

9. ps.setLong(1, patientID);

10. ps.setString(2, startDate);

11. ps.setString(3, startDate);

12. ps.setString(4, endDate);

13. ps.setString(5, endDate);

14. ps.setString(6, startDate);

15. ps.setString(7, endDate);

16. ResultSet rs = ps.executeQuery();

17. return loader.loadList(rs);

18. } catch (SQLException e) {

19. e.printStackTrace();

20. throw new DBException(e);

21. }

Figure 5.7

A Code Clone Detected in the iTrust Dataset
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1. /* factory ND Code ID End */

2. byDate(patientID, startDate, endDate);

(a) Comments Generated by the LSI-based Code Summarization Technique

1. /** factory

2. * ND Code

3. * OV Medication

4. * Office Visit

5. * Visit ID

6. * Office Visit

7. * Patient ID

8. * End Date

9. * Star tDate

10. **/

11. byDate(patientID, startDate, endDate);

(b) Comments Generated by the Indexing-based Code Labeling Technique

Figure 5.8

Applying Traceability Sign Preservation on a Code Clone
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with previous observations that simple techniques were shown to better reflect the subject

matter of the code than other more complicated techniques such as LSI or LDA [53].

To further compare the effectiveness of these techniques, we integrate them into our

experimental procedure after applying EXTRACT METHOD. We then re-trace all of our

experimental datasets. Results are shown in Figure 5.12 and Table 5.3. The results show

that, when the indexing-based code labeling procedure is used, no statistically significant

drop in terms of precision or recall is detected in any of our three datasets i.e., the per-

formance is unaffected by removing the clones. In contrast, while applying the LSI-based

code summarization technique helps to preserve some of the effective traceability signs, it

still could not improve the results significantly.

iTrust eTour WDS

0

5 · 10−2

0.1

0.15

0.2

MAP

XM Labeling Summarization

Figure 5.9

Percentage of Lost Traceability Signs in iTrust, eTour and WDS
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5.5.4 Moving Information

Our results show that moving misplaced information among the system’s modules has

no significant impact on the performance. This suggests that misplaced signs might not be

as problematic for IR-based traceability as missing or duplicated signs. This phenomenon

can be explained based on the fact that Feature Envy code smell tends to be less dominant

and more complicated to detect in software systems than other code smells such as code

clones [19, 220, 245]. In fact, further analysis shows that even when a method is moved to

another class, it is often still highly referenced (called) in its original class, thus the track

is unlikely to get discontinued, causing MOVE METHOD refactoring to have no obvious

impact on the performance. However, it is important to point out that in some cases, where

a high density of misleading signs were detected, MOVE METHOD was able to reverse

that effect, thus resulting in a slight increase in the recall, especially in WDS and eTour,

however, that improvement was statistically insignificant.

5.5.5 Discussion

Our analysis has revealed that, in terms of precision and recall, maintaining a domain-

specific thesaurus can be equivalent to applying RENAME IDENTIFIER refactoring. There-

fore, this particular refactoring can be considered as an alternative strategy to handle vo-

cabulary mismatch in software artifacts. However, refactoring provides a more systematic

way to handle this problem. In other words, instead of separately maintaining an exter-

nal ad-hoc dictionary of the system’s vocabulary and their synonyms, this process can be

handled internally through refactoring, as an integral part of the evolution process. As
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mentioned earlier, RENAME IDENTIFIER refactoring is in fact the most applied refactoring

in practice, and it has already been integrated in most contemporary IDEs [3,66,187,190].

In terms of effort, as Table 5.1 shows, the amount of effort required to rename identi-

fiers can be comparable to the external thesaurus technique. While in RENAME IDENTI-

FIER human analysts still have to select new identifiers’ names, when building an external

thesaurus, synonym relations have to be identified manually. In addition, both methods

require a sufficient knowledge of the system’s application domain. However, thesaurus-

based methods often require calibrating a certain parameter (α in Eq.7) to achieve the

desired performance levels [121], while no calibration or optimization is required when

applying RENAME IDENTIFIER. In addition, the procedure we propose to identify renam-

ing opportunities helps to alleviate a considerable amount of the effort required to identify

misleading signs. In fact, the research on fully automating this process has noticeably ad-

vanced in recent years, especially in the domain of acronyms and abbreviations expansion,

opening the door for this process to be fully automated [35, 150, 242].

Our results also show that a simple code labeling technique can fill the vocabulary gap

that might result from removing code clones in the system. In terms of effort, code labeling

techniques are fully automated, so the human effort is minimized. However, it is important

to point out that these implanted labels (signs) are also subject to become outdated as code

evolves, thus generating misleading tracks. Therefore, it is important to keep such labels

up-to-date and in sync with any changes affecting the code segments they describe.

Finally, even though moving misplaced signs in the system did not result in a statis-

tically significant improvement in the performance, such refactoring can still have an in-

149



www.manaraa.com

fluence on traceability, especially in safety critical systems, where losing even one critical

link could be detrimental [45]. However, unlike the renaming process, MOVE METHOD is

a nontrivial process, and often results in introducing bugs in the system [190]. Therefore,

a careful cost-benefit analysis might be required to determine if performing such transfor-

mation is worthwhile.

Our findings in this chapter helped in exploring several issues related to applying refac-

toring as a performance enhancement strategy in IR-based automated tracing. In particu-

lar, our study provides insights into developers’ actions that might have an impact on the

system’s traceability during evolution, and reinforced past proposals advocating the use

of consistent, and regular vocabulary in identifiers’ names [27]. In addition, our analy-

sis revealed how potentially negative effects of removing code clones could be reversed

through code labeling, an option that might be important to have in code clone refactoring

tools [20, 129].

5.6 Limitations

The experiment presented in this chapter has several limitations that might affect the va-

lidity of the results. Threats to external validity impact the generalizability of results [59].

In particular, the results of this study might not generalize beyond the underlying experi-

mental settings. A major threat to our external validity comes from the datasets used in this

experiment. In particular, two of the projects were developed by students and are likely to

exhibit different characteristics from industrial systems. We also note that our traceability

datasets are of medium size, which may raise some scalability concerns. Nevertheless, we
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believe that using three datasets from different domains, including a proprietary software

product, helps to mitigate these threats.

Another threat to the external validity might stem from the fact that we only experi-

mented with three refactorings. However, the decision of using these particular refactor-

ings was based on careful analysis of the IR-based automated tracing problem. In addition,

these refactorings have been reported to be the most frequently used in practice [176,256].

Another concern is the fact that only requirements-to-code-class traceability datasets were

used. Therefore, our findings might not necessarily apply to other types of traceability

such as requirements-to-requirements, requirements-to-design or even different granular-

ity levels such as requirements-to-method. However, our decision to experiment only with

requirements-to-class datasets can be justified based on the fact that refactoring has ac-

celerated in source code, especially Object-Oriented code, more than any other types of

artifacts, thus we find it appropriate at the current stage of research to consider this partic-

ular traceability type at this granularity level.

Other threats to the external validity might stem from specific design decisions such as

using VSM with TFIDF weights as our experimental baseline. Refactoring might have a

different impact on other IR methods such as LSI and ESA, thus, different results might

be obtained. Also, a threat might come from the selection of procedures and tools used to

conduct refactoring. However, we believe that using these heavily used and freely available

open source tools helps to mitigate this threat. It also makes it possible to independently

replicate our results.
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Internal validity refers to factors that might affect the causal relations established in

the experiment. A major threat to our study’s internal validity is the level of automation

used when applying different refactorings. In particular, an experimental bias might stem

from the fact that the renaming process is a subjective task carried out by the researchers.

In addition, human approval of the outcome of the refactoring process was also required.

However, as mentioned earlier, in the current state-of-the-art in refactoring research and

practice, human intervention is a must [86, 184]. In fact, it can be doubtful whether

refactoring can be fully automated without any human intervention [131]. Therefore, these

threats are inevitable. However, they can be partially mitigated by automation.

In our experiment, there were minimal threats to construct validity as standard IR mea-

sures, which have been used extensively in requirements traceability research, were used

to assess the performance of different treatments (recall, precision, MAP and DiffAR).

We believe that these two sets of measures sufficiently capture and quantify the different

aspects of methods evaluated in this study.

5.7 Related Work

Our work in this chapter can be classified under the research category of and managing

traceability in evolving software systems. In particular, we investigate on strategies to

mitigate the risks of software evolution on traceability. In what follows, we review seminal

work in this domain, and briefly describe how such work relates to, or can be distinguished

from, our work.
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Cleland-Huang et al. [44] presented an event-based approach that establishes traceabil-

ity links through the use of publish-subscribe relationships between dependent objects in

the system. When a change to a certain requirement occurs, an event notification message

is published to all the subscribed dependent objects. Therefore, ensuring that all these

publish-subscribe relations (trace links) are up-to-date or consistent during system evolu-

tion. Our work can be distinguished from this work based on the fact that this approach

handles the change from the requirement side of the link, while the proposed approach in

this chapter handles evolution from the source code side. Our approach is based on the

observation that code is more prone to change than requirements [21, 154]. Therefore,

working on that side of the link is expected to have more immediate effect on traceability.

Egyed [72] proposed an approach that uses observations about the runtime behavior

of the system to detect associations among functional scenarios and their executing code.

In particular, traces are defined based on the data flow in the form of a footprint graph.

A footprint is defined as the lines of code used while executing a scenario. Using our

approach, the code does not have to execute or even compile, thus avoiding complications

related to the runtime behavior of the system. In addition, no test cases or usage scenarios

are needed.

Antoniol et al. [13] proposed an automatic approach to identify class evolution disconti-

nuities due to possible refactorings. The approach identifies links between classes obtained

from refactoring, and cases where traceability links were broken due to refactoring. Our

approach can be related to this work in the sense that we propose mitigation strategies

to overcome problems that may result from certain refactorings (EXTRACT METHOD).
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Moreover, we propose the use of refactoring as a pre-processing step to enhance the per-

formance, rather than only dealing with the implications of already applied refactorings.

Mäder et al. proposed a rule-based traceability approach for maintaining traceability

relations during evolutionary change [167]. This approach revolves around the monitoring

of elementary changes that take place to UML model elements, and updating a pre-existing

set of traceability relations associated with such changes. This insures that changes in the

system’s structure will be reflected on traceability, thus keeping such relations up-to-date.

However, this approach is restricted to the scope of UML-based, Object-Oriented (OO),

software engineering. In contrast, refactoring is not limited to structural and OO code, and

no UML models have to be generated for the system.

The approach proposed by Charrada et al. [21] tackles the problem that we tackle in

this chapter from a different perspective. In particular, the authors proposed an approach to

automatically identifying outdated requirements by analyzing source code changes during

evolution to identify the requirements that are likely to be impacted by the change. This

approach can be complementary to our approach. While our approach works on the de-

caying vocabulary structure from the code side, their approach works on the same problem

but from the opposite side of the traceability link (the trace query). This will accelerate the

process of bridging the textual gap in the system.

Finally, since this chapter is based on Gotel and Morris’s theoretical approach of IR-

based automated tracing [99], we find it appropriate here to end our discussion with Gotel’s

latest views on the field. In their most recent roadmap paper, Gotel et al. [96] identified

a number of challenges for implementing effective software and systems traceability. In
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the set of short-term goals that they specified, they emphasized the need for researchers to

focus on mechanisms to mix and match approaches to achieve different cost and quality

profiles. The work we presented in this chapter is aligned with that goal. In particular, our

objective is to add to the current incremental effort of this domain in a way that helps to

move forward on the automated tracing roadmap.

5.8 Conclusions and Future Work

In this chapter, we explored the effect of applying various refactoring methods on the

different performance aspects of IR-based tracing methods. Our main hypothesis is that

certain refactorings will help to reestablish the decaying traceability tracks of evolving

software systems, thus helping IR methods to recover more accurate lists of candidate

links. To test our research hypothesis, we examined the impact of three refactorings on the

performance of three requirements-to-code datasets from different application domains. In

particular, we identified three main problems associated with IR-based automated tracing

including: missing, misplaced, and duplicated signs, and we suggested three refactorings to

mitigate these problems. Results showed that restoring textual information in the system’s

artifacts (RENAME IDENTIFIER) had a significantly positive impact on the performance.

In contrast, refactorings that remove redundant information (EXTRACT METHOD) affected

the performance negatively. The results also showed that moving information between the

system’s modules (MOVE METHOD) had no noticeable impact on the performance.

Furthermore, in our analysis, we compared the performance of RENAME IDENTIFIER

with two other commonly used techniques for handling the vocabulary mismatch problem
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in software systems. These methods include retrieval enhancement with thesaurus sup-

port and query expansion techniques. We analyzed the performance of these techniques,

exploited their limitations, and demonstrated how refactoring could address these limi-

tations. In addition, we suggested a sign-preserving technique to mitigate the negative

impact of refactoring code clones on traceability. In particular, we proposed two meth-

ods for generating source code descriptions including code labeling and summarization,

and we analyzed and evaluated their effectiveness in preserving traceability information.

Results showed that simple code labeling was more successful than code summarization

in preserving traceability signs from getting lost when code clones were refactored. Fur-

thermore, an effective traceability sign analysis was conducted to quantify the effect of

different investigated refactorings on the traceability tracks in our experimental systems.

The line of work in this chapter has opened several research directions to be pursued in

our future work. These directions can be described as follows:

• Refactoring: In our future analysis, we are interested in investigating the effect of
other refactorings on traceability. In particular, refactorings that work on the struc-
tural information of the system (e.g., EXTRACT CLASS [84]), and target different
granularity levels, will be investigated.

• IR methods: In our future work, we are interested in exploring the effect of refactor-
ing on other IR methods that are often used in automated tracing, such as (LSI) [174]
and (LDA) [16, 28]. These methods work by exploiting hidden (latent) structures in
software systems, rather than directly matching keywords in software artifacts, thus
they might have a different response to different refactoring methods.

• Tool support: In terms of tool support, a working prototype that implements our
findings in this chapter is in order. A working prototype will allow us to conduct long
term studies that will give us a better understanding of the role of human analysts
in the process [197]. In particular, quantifying the potential effort-saving of our
approach, its usability, and scope of applicability.

• Automation: As observed in our experiment, there is still a major effort concern
when it comes to refactoring. Humans still play a major role in controlling the
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refactoring process, starting from approving refactoring candidates captured by code
smell detection tools, to applying required refactorings, and verifying the outcome of
the process. Therefore, in our future work we will be exploring refactoring automa-
tion strategies that can help to alleviate some of the manual effort in the process.
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Performance after Applying Different Refactorings
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Comparing the Performance of (VSM-RI), with (VSM-T) and (ESA)

159



www.manaraa.com

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

Pr
ec

is
io

n

iTrust

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

eTour

0.4 0.6 0.8 1
0

0.1

0.2

0.3

Recall

WDS

VSM
Labeling

Summarization

Figure 5.12

Preserving Traceability Signs Code Summarization and Code Labeling
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CHAPTER 6

HUMAN ASPECTS AND TOOL SUPPORT

Studying human analyst’s behavior in automated tracing is a new research thrust. Build-

ing on a growing body of work in this area, we offer a novel approach to understanding

requirements analyst’s information seeking and gathering. We model analysts as predators

in pursuit of prey — the relevant traceability information, and leverage the optimality mod-

els to characterize a rational decision process. The behavior of real analysts with that of

the optimal information forager is then compared and contrasted. The results show that the

analysts’ information diets are much wider than the theory’s predictions, and their residing

in low-profitability information patches is much longer than the optimal residence time.

These uncovered discrepancies not only offer concrete insights into the obstacles faced by

analysts, but also lead to principled ways to increase practical tool support for overcoming

the obstacles.

6.1 Introduction

One area that traceability is indispensable is the engineering of mission- or safety-

critical software systems. Under these circumstances, a human analyst must vet (e.g.,

browse and validate) the candidate RTM offered by the tool [49]. Vetting is thus a cen-
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tral activity in assisted requirements tracing, in which a human analyst engages with an

automated tracing tool to perform the assigned tracing task [62].

Studies of human behavior [49, 62, 119, 138] showed that, in interacting with the trac-

ing tool to prepare their final RTM, the analysts made both errors of omission (threw out

correct links) and errors of commission (added incorrect links). A thoroughly conducted

experiment by Dekhtyar et al. [62] tested 11 vetting variables. The results revealed that

only the accuracy of the initial TM and the analyst effort expended in validating offered

links had statistically significant effects on the final TM, while the other 9 factors (e.g.,

tool used, tracing experience, effort on searching for omitted links, etc.) did not make

a difference [62]. A qualitative study by Kong et al. [138] provided additional insights

into analysts’ behavior. For example, all the analysts were observed to make multiple cor-

rect decisions in a row, and such correct-decision bouts were interleaved with streaks of

incorrect decisions [138].

Currently, empirically observing analysts’ behavior is adopted as the main method-

ology for researching the human factors in assisted requirements tracing. Observational

studies are particularly valuable in answering “what” questions by uncovering behavioral

patterns. However, little is known about “why” analysts behave in a certain way and “how”

to improve the analysts’ tracing performance in a principled manner. Addressing these

knowledge gaps is of vital importance because, with a deeper theoretical understanding

about the fundamental mechanisms underlying the analysts’ behavior, the empirical obser-

vations can be related more coherently and the key factors can be tested more completely.
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In this work, we explore the theoretical underpinning of analyst’s requirements tracing

behavior based on Pirolli’s information foraging theory [208]. The theory uses our animal

ancestors’ “built-in” food-foraging mechanisms [235] to understand human information

seeking and gathering in the vastness of the Web. Lawrance and colleagues [146–149]

have recently pioneered the application of information foraging theory to the debugging

domain, and presented encouraging results that matched the theory’s predictions with the

developers’ actual code navigations. Building on their influential work, we aim to investi-

gate human analysts’ requirements tracing strategies in light of foraging theory’s constructs

and principles.

This chapter reports an exploratory study that examines two of foraging theory’s foun-

dational models [208] in the context of tracing: 1) the diet model optimizes the decision

related to what kinds of information to consume and what to ignore; and 2) the patch

model determines the optimal time to spend in an information patch. These optimality

models allow us to define the behavioral problems that are posed by the requirements

tracing environments, and therefore allow us to determine how well an optimal forager

(analyst) performs on those problems. We then compare the behavior of real analysts with

that of the optimal forager. In particular, the theory’s predictions are confronted with the

tracing behavior of 6 analysts who validated the links between requirements and code of a

software system in the healthcare domain. The departures from optimality revealed by the

comparison not only offer concrete insights into the obstacles faced by the human analysts,

but also lead to principled ways to overcome the obstacles.
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The contributions of our work lie in the analysis of optimality within the shaping limits

placed by the task and the information environments. Our work advances the fundamental

understanding about analysts’ information seeking in light of the adaptiveness of human

behavior. This improved understanding, in turn, enables principled ways to increase practi-

cal support for software traceability. In what follows, we present background information

on foraging theory and assisted requirements tracing in Section 6.2. We then detail our

research methodology in Section 6.3. Sections 6.4 and 6.5 describe the empirical study’s

design and results respectively. The implications of our work are discussed in Section 6.6,

and finally, Section 6.7 concludes the chapter.

6.2 Background and Related Work

6.2.1 Optimal Foraging Theory

Animals adapt, among other reasons, to increase their rate of energy intake. To do this

they evolve different methods: a wolf hunts for prey, but a spider builds a web and allows

the prey to come to it. Optimal foraging theory is developed in biology for analyzing the

adaptive value of food-foraging strategies [235]. Optimality here refers to the strategy that

maximizes the gain per unit cost. Central to optimal food foraging are the diet model and

the patch model.

The diet model deals with the tradeoffs when a predator forages in an environment

in which food is distributed in a patchy manner. Figure 6.1-a illustrates the patchy en-

vironment by presenting a hypothetical bird foraging in berry clusters. The forager must

expend some amount of between-patch time (tB) arriving at a prey-patch, and tW denotes
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the within-patch foraging time. Figure 6.1-c, depicts Charnov’s Marginal Value Theo-

rem [235] which states that the rate-maximizing time to spend in patch, t∗, occurs when

the slope of the within-patch gain function g(tW ) is equal to the average rate of gain, which

is the slope of the tangent line R∗. In this figure g(tW ) represents a decelerating expected

net gain function. The amount of energy gained per unit time of foraging is therefore

R = g(tW )/(tB + tW ). Following Stephens and Krebs [235], we use π = g/tW to denote

the patch’s profitability and use λ = 1/tB to denote the patch’s encounter rate.
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Figure 6.1

(a) Patchy environment. (b) Optimal Diet. (c) Charnov’s Marginal Value Theorem

The optimal diet selection follows the principle of lost opportunity [235]. Intuitively,

the principle states that the prey-patch is predicted to be ignored if its profitability is less

than the expected rate of gain of continuing search for other prey-patches. Formally, as

shown in Figure 6.1-b, let the patches be ranked by profitability, πi = gi/tW i, such that

π1 > π2 >. . .> πn. The optimal diet can be expanded by adding prey-patches in order
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of decreasing profitability (i.e., from 1 to n) until the rate of gain for a diet of the top k

prey-patches is greater than the k + 1st prey-patch’s profitability,

(
R(k) =

∑k
i=1 λi · gi

1 +
∑k
i=1 λi · tW i

)
>
(
gk+1

tWk+1

= πk+1

)
. (6.1)

The left side of the inequality concerns the rate of gain obtained by the diet of the k highest

profitability prey-patches, whereas the right side concerns the profitability of the k + 1st

prey-patch. In Figure 6.1-b, the optimal diet contains {prey-patch1, prey-patch2, . . . , prey-

patchk}, and therefore {prey-patchk+1, . . . , prey-patchn} are predicted to be ignored by the

forager.

Once a prey-patch is selected to be part of the forager’s diet, the patch model deals with

predictions of the amount of time to spend within the patch. The basic idea is illustrated

in Figure 6.1-c. As the forager gains energy, the amount of food diminishes or depletes.

Consequently, there will be a point at which the expected gains from foraging within the

current prey-patch become less than the expected gains that could be made by leaving for a

new one. Figure 6.1-c shows that the rate-maximizing time, t∗, occurs when the derivative

of g(tW ) is equal to the slope of the tangent line R∗.

In a nutshell, the simple rule in optimal foraging theory is: “do not expend more energy

finding the food than the food provides.” Animals (including humans) have evolved some

very sophisticated and fascinating food-seeking mechanisms. Optimal foraging theory has

been proven to be productive and resilient in addressing food-searching behavior in the

field and the lab, whereby the adequacy of the tenets (e.g., the patch model and the diet

model) is tested to account for the evolution of given structures or behavioral traits [235].
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6.2.2 Foraging Theory Applied to Web and Code Navigation

Humans seeking information adopt various strategies, sometimes with striking paral-

lels to those of animal foragers. The wolf-prey strategy bears some resemblance to classic

information retrieval [175], and the spider-web strategy is like information filtering [227].

Pirolli [208] developed information foraging theory by laying out the basic analogies be-

tween food foraging and information seeking: predator (human in need of information)

forages for prey (the useful information) along patches of resources and decides rationally

on a diet (what information to consume and what to ignore). By adopting the optimality

models and adding details where necessary, Pirolli raised foraging theory from the physical

and biological levels to the knowledge and rational levels.

The main application area of information foraging theory is the study of users’ in-

formation seeking on the Web. During Web navigation, users operate in two environ-

ments [208]. The task environment embodies a goal, problem, or task that drives human

behavior, whereas the information environment structures users’ interactions with the con-

tent. An optimal Web user’s navigation is then calculated according to the notion of in-

formation scent [207], a subjective sense of value and cost of accessing an information

source based on perceptual cues. The WUFIS (Web User Flow by Information Scent) al-

gorithm [38] represents one of the most rational and effective computational models of

information scent by considering both environments in its computation: 1) a spreading ac-

tivation network [6] that represents user’s goal memory in the task environment; and 2)

an inter-word correlation representation used to approximate user’s conception of word

synonymy [225] in the information environment. Computing the Web user’s “informa-
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tion diet” provides remarkable insights into issues like link selection and decision to leave

a webpage. As a result, information foraging theory has become extremely useful as a

practical tool for website design and evaluation [233].

Inspired by human’s adaptive interaction with information on the Web, researchers be-

gan to apply foraging theory in software engineering. Ko et al. [136] were among the

first to relate information foraging to developers’ seeking relevant code in software main-

tenance. In recent years, Lawrance et al. [146–149] have made tremendous strides in un-

derstanding programmer navigation during debugging by viewing programmer as predator

and bug-fix as prey. Building on Pirolli’s work, Lawrance et al. [147] developed the PFIS

(Programmer Flow by Information Scent) model by combining: 1) a spreading activation

over the source code’s topology (analogous to links on webpages); and 2) a word similarity

measure between the bug report and the source code (computed as vector space model’s

cosine similarity using the TF-IDF weighting schema [175]). Extending beyond Pirolli’s

work, Lawrance et al. [148] presented the PFIS2 model which incorporated the incremen-

tal changes in programmers’ conception of the navigation goals during debugging. More

recent work [206] focused on empirically assessing programmer navigation models’ pre-

dictive accuracy and optimally composing single factors (e.g., recency, spatial proximity,

etc.) into a family of PFIS3 models.

In summary, information foraging theory [208] provides an evolutionary-ecological

approach to understanding human information-seeking on the Web. Applying the theory

in software engineering has also been fruitful as the foraging-theoretic approach provides

a foundation for studying developers’ navigation around the code base [196]. Building
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and expanding upon Lawrance and colleagues’ seminal work on debugging [146–149], we

investigate an important but different information-intensive software engineering task —

assisted requirements tracing.

6.2.3 Assisted Requirements Tracing

Although IR-based tools automate the RTM generation to a large extent, in coping with

mission- or safety-critical software systems, the human analyst must vet the candidate

RTM produced by the tool and add and remove links as necessary to arrive at the final

RTM [49]. It is important to emphasize that traceability is not an end in itself but a means

towards some other end. The analyst who vets the candidate RTM may be involved in risk

assessment, criticality analysis, regulatory compliance, or some other software engineering

activities. As a result, the analyst can always override any tool’s output and has the final

say on whether or not the traceability is correct [119].

Assisted requirements tracing, thus, refers to the process in which the human analyst

becomes actively involved and makes decisions concerning the automated tool’s output.

The foundational work in this area was laid by Hayes and Dekhtyar [119] where they elu-

cidated the need to study human interaction (reaction) with the tracing tool’s results. Since

then, a series of studies [49,62,138] investigated analyst behavior and revealed that human

tended to degrade the accuracy of the RTM provided by the tool. Among the important

findings, a rather surprising one was that incorrect decisions were often made if the analyst

spent much time on the links [138]. In order to understand the findings like this, it was

suggested that we might need to experimentally study one variable at a time [50]. Eleven
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variables were then examined by Dekhtyar et al. [62]. The work represents one of the most

significant empirical discoveries to date.

In essence, assisted requirements tracing is aimed at providing the best of both worlds,

allowing human and automated tool to do what they do best [62]. While recent empiri-

cal contributions have enlightened the vital role of human factors, we believe gaining a

theoretical understanding can further advance the field. A foraging-theoretic exploration

can shed light on the mechanisms underlying the human’s adaptive interaction with the

information presented in the tracing tool. This is precisely the focus of our research.

6.3 Research Methodology

Assisted requirements tracing shares many characteristics with 1) IR-based Web search

and 2) navigation along the software entities. As both are domains to which informa-

tion foraging theory applies (cf. Section 6.2.2), we contend that the analyst’s seeking and

gathering traceability information can be mathematically modeled in light of the “built-in”

foraging mechanisms. In this way, the human analyst can be viewed as a predator in pursuit

of prey — the relevant traceability information.

The overall goal of our research is to explore the differences between the analyst’s

actual information foraging behavior and that defined by the optimality models. Our com-

parison concentrates on the information diet selection (the diet model) and the residence

time within a selected information patch (the patch model). Before formulating specific

research questions in Section 6.3.2, we detail how an optimal analyst’s decisions are made

based on the rational analysis of information foraging.
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6.3.1 Rational Analysis

Anderson’s rational analysis [5] is built upon the principle of optimization under con-

straints. The basic idea is that the constraints of the environment place important shaping

limits on the optimization that is possible [208]. Applied to debugging, the principle im-

plies that optimal programmers will make the best possible navigational choices, given

the information the integrated development environment (IDE) like Eclipse makes avail-

able to them at each moment [149]. Similarly, the human analyst’s optimal behavior in

tracing must be rationalized by scrutinizing the information that the automated tool makes

available at each moment.

Figure 6.2 shows a screenshot of the automated requirements tracing tool used in our

study. We call the tool “ART-Assist” to emphasize the integral yet supportive role it plays in

assisted requirements tracing, in which the human analyst must be actively involved [119].

The foremost aim in developing ART-Assist was to obtain functional adequacy of state-

of-the-art tracing tools. To that end, we surveyed the basic features of RETRO [121],

ADAMS [55], and Poirot [157], and also reviewed our own experience from building the

TraCter tool [170]. As different IR-based traceability recovery methods show compara-

ble performance [199], the back-end of ART-Assist adopts the vector space model with

TF-IDF weighting [10, 121]. The front-end uses the ordered list to display the retrieved

traceability links according to the similarity score computed by the IR algorithm. ART-

Assist ranks traceability links much like search engines like Google rank search results in

response to a user’s query. To support the best practice of in-place traceability [47] which

advocates tracing-related artifacts being managed within their native environments, each
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Figure 6.2

A Screenshot of ART-Assist
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page of ART-Assist presents 10 retrieved links (or more accurately, the links’ snippets) as

if they reside in Google’s search result page (SRP).

Several design decisions about ART-Assist’s information handling are worth discussing.

We restrict the discussion to the RTM between requirements-level use cases and implementation-

level classes, as this is the granularity level at which our empirical study is conducted.

What information is used for retrieval? ART-Assist extends our indexer [169] to pro-

cess both source code and use case descriptions. Three steps are carried out: tokenizing,

filtering (i.e., removing stop words like the and int), and stemming (i.e., reducing a

word to its inflectional root: “patients”→ “patient”). The resulting indices, which contain

the artifacts’ partial and important information, are then used for retrieval.

How much retrieved traceability information to keep? A basic tenet of IR-based

methods is that the list of retrieved links contains a higher density of correct traceabil-

ity links in the upper part of the list and a much lower density of such links in the bottom

part of the list [57]. ART-Assist therefore presents the human analyst with 70% of the most

similar links, a threshold used in prior work [169].

What information is included in the snippet? The snippet design is informed by our

recent study on topical locality [195] where we found that class name along with header

comments conveyed class body’s topic. In addition, the class path offers the file hierarchy

information and can act as the URL for the retrieved link. Thus, ART-Assist displays a

3-line snippet in the SRP: the class name, the class header trimmed in 1 line, and the class
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path. An innovative design in ART-Assist is that a mouse-hover over a link’s snippet pops

up the full class header comments, as shown in Figure 6.2.

How to interact with the traceability information? ART-Assist’s interaction design

philosophy is to fulfill analyst’s tracing goal while keeping the operations straightforward,

accessible, and responsive. Direct navigation to a certain SRP is enabled by clicking the

corresponding page number. The highlighted page number shows which SRP is currently

displayed. Clicking the class name in the snippet or the “magnifying glass” icon allows

the entire class file to be viewed in a new window. A link can be selected or deselected via

“+” (add) or “×” (remove). A shopping-cart-like area in ART-Assist’s upper-right corner

enables the explicit management of selected links. Once a link is selected, its snippet is

yellow highlighted. Once the final RTM is approved, the “submit” button shall be pressed.

Understanding how ART-Assist works is necessary for modeling the way the informa-

tion environment structures an optimal analyst’s foraging. Due to the information needs of

the human analyst, navigation in ART-Assist has two fundamental differences from both

navigation on the Web and navigation in an IDE such as Eclipse. First, what counts as a

hyperlink is well-defined in a website [208] and can be readily modeled by the one-click

link built in Eclipse [147,148]. In contrast, only a single hyperlink type is defined in ART-

Assist, namely, the click that enables the viewing of the complete source code file. Second,

Web and program navigations can be of great depth because many information items can be

reached via clickable hyperlinks. In contrast, the depth of ART-Assist navigations is rather

limited because the analyst is primarily interested in viewing and (de-)selecting a traceabil-
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ity link. Such differences suggest that the hyperlink topology in a website or a modern IDE

is much richer and denser than the one defined in ART-Assist. For this reason, we apply

foraging theory’s optimality models directly instead of adopting the spreading activation

technique used in WUFIS [38] and PFIS [147].

We model each page retrieved by ART-Assist as an information patch in which the

prey might hide [148]. A patch then contains the SRP and the enclosed information items

(traceability links) that can be viewed and collected. The key for instantiating “patch”, one

of foraging theory’s core constructs, is to preserve the locality such that there are more

transitions within a patch than between patches. In Web navigation [208], for instance, a

website is treated as an information patch since it is easier to navigate information within

the same patch (website) than to navigate information across patches (websites). To assess

our patch selection, Fig.6.3 uses a problem behavior graph to visualize an analyst’s inter-

action with ART-Assist when tracing the use case shown in Figure 6.2 (‘View Physician

Satisfaction Survey Results’).

The Problem behavior graph in Figure 6.3 demonstrates the proper mapping of each

ART-Assist’s page to an information patch. Time in the graph proceeds left to right and

top to bottom. Boxes are states. Arrows are moves (transitions). Double vertical lines are

returns to a previous state. Dotted enclosing box shows the patch’s boundary. The states S0,

SRPi, and Fj represent the initial state, the ith search result page (SRP), and the information

item (traceability link) respectively. Every Fj state is annotated with an ART-Assist icon

that indicates the specific operation performed by the human analyst: “magnifying glass”

means “view”, “+” means “select”, and “×” means “deselect”. Fj: link (source code file)
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Problem Behavior Graph
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correspondences are as follows: F1: SurveyBean.java, F2: SurveyResultBean.java, F3:

SurveyResultDAO.java, F4: HCPDiagnosisBean.java, F5: GetUserNameAction.java, F6:

PersonnelBean.java, F7: Role.java, F8: ViewVisitedHCPsAction.java, F9: PrescriptionRe-

portBean.java, and F10: ViewOfficeVisitAction.java.

A problem behavior graph, which is the foundation for Web behavior graph [208] and

code navigation graph [196], is particularly good at showing the structure of human’s prob-

lem solving. Figure 6.3 not only illustrates ART-Assist navigation’s limited depth, but also

supports patch selection’s locality property. Among the total of 36 sessions in our empirical

study presented later, the average ratio of within- to between-patch operations (transitions)

is 4.2. This ratio is comparable to the values found in Web navigation (ratio=3.7 [208])

and in code navigation (ratio=4.4 [196]).

Figure 6.4 illustrates how to apply the principle of lost opportunity [208] to determine

an optimal forager’s information diet. For each of the 5 patches given in Figure 6.4-a,

the information gain (g) is defined by precision. To characterize the within-patch foraging

time (tW ), we leverage MAP (mean average precision), a metric widely accepted in the

IR community. MAP measures “the quality across the recall levels” [175]. The formal

definition of MAP can be found in the standard IR reference [175] and the traceability-

specific literature [237]. Intuitively, the higher the MAP, the closer the correct links are

to the top of the information patch and therefore the less within-patch foraging time (tW )

an optimal analyst would need. Thus, we define an information patch’s profitability as:

π = g/tW = precision · MAP. The optimal diet can then be selected according to the

relationship specified in equation (6.1); here, the encounter rate of all patches is assumed
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to be a single unit (i.e., λ=1) as ART-Assist allows each patch to be accessed by a single

click on the page number. Figure 6.4-b shows how the theoretical diet (D Th) is iteratively

expanded and optimized in order to counteract the lost opportunity [208].

Patch Precision (g) MAP (1/tW ) Profitability (π)
Patch1 0.40 0.67 0.27
Patch2 0.30 0.81 0.24
Patch3 0.20 1.00 0.20
Patch4 0.20 0.83 0.17
Patch5 0.10 1.00 0.10

(a)

k R(k) πk+1 D Th (optimal diet in theory)
0 – – {Patch1}
1 0.16 0.24 {Patch1, Patch2}
2 0.19 0.20 {Patch1, Patch2, Patch3}
3 0.19 0.17 {Patch1, Patch2, Patch3}

// Following equation (6.1), the optimal diet selection
// terminates because R(3) > π4.

(b)

Figure 6.4

(a) Optimal Diet Delection. (b) The Optimal Diet (D Th)

To analyze the optimal residence time within a patch, we apply Charnov’s Theorem [208,

235] to examine how much information value the forager acquires over time t:

g(t) =
NR · t

NT · ts +NR · th
. (6.2)

In this equation, NR is the number of relevant information items the forager handles, NT

is the total number of information items encountered, ts is the scanning time, and th is the

handling time. We instantiate the value of these parameters based on analysts’ actual trac-
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ing sessions. This allows for theoretically determining the optimal within-patch residence

time (cf. Figure 6.1-c) which we denote by t∗ Th.

6.3.2 Research Questions

The research questions addressed in our work are the differences and discrepancies

between D Th (optimal diet in theory) and D Ac (analyst’s actual information diet), and

those between t∗ Th (optimal within-patch residence time in theory) and t∗ Ac (analysts’

actual within-patch residence time). Specifically, we are interested in understanding real

analysts’ deviations and departures from optimality from two complementary perspectives.

• Structural. To what extent is an information patch’s selection affected by its prof-
itability and quality? While profitability (π = precision ·MAP) is computed only
if the answer set of true links is known, quality of a patch can be measured by its
internal cohesion [69].

• Behavioral. To what degree is an information patch’s selection affected by the resi-
dence time and the navigation behavior of the human analysts?

The answers to the research questions will enable not only a systematic assessment

of the factors suggested by information foraging theory, but also a coherent account for

unifying the observations that would otherwise not be linked in a meaningful way. For

example, with the foraging-theoretic foundation we speculate that (i) the interleave of an-

alyst’s correct- and incorrect-decision streaks [138] might be due to the inclusion of both

optimal and non-optimal information patches in the actual diet, and (ii) the incorrect deci-

sions after a long foraging period [138] might be attributed to the excessive residence time

within a patch.
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6.4 Empirical Study Setup

To answer the research questions, we conducted an assisted requirements tracing ex-

periment by using the iTrust dataset (http://agile.csc.ncsu.edu/iTrust). iTrust is a Java ap-

plication aimed at providing patients with a means to keep up with their medical records, as

well as to communicate with their doctors. Although originated as a course project, iTrust

has exhibited real-world relevance and served as a traceability testbed for understanding

the importance of security and privacy requirements in the healthcare domain [183].

Table 6.1

Requirements Traces Used in the Experiment

ID (our Title |true |true links
study) (iTrust ID) links| retrieved|
UC1 Document Office Visit (UC-11) 26 25
UC2 Maintain a Hospital Listing (UC-18) 4 4
UC3 Maintain Standards Lists (UC-15) 13 12
UC4 Safe Drug Prescription (UC-37) 20 17
UC5 View Physician Satisfaction Survey 8 8

Results (UC-25)
UC6 View Patients (UC-28) 4 4

The iTrust dataset has 46 use cases (UCs) and 226 Java classes. The requirements-

to-source-code traceability matrix is of size 10,396. The answer set, prepared by iTrust’s

developers, contains 314 true links. Since we wanted to observe analyst’s navigation be-

havior, only the UCs with more than 1 true link defined in the answer set were considered.

We identified 32 such UCs, among which 6 were randomly selected. Table 6.1 lists these

requirements tracing tasks. Note that ART-Assist keeps 70% of the most similar links in

180



www.manaraa.com

the retrieval results. Table 6.1 shows that, in some cases, not every true link is presented in

ART-Assist.

We recruited 6 upper-division students in computing science from Mississippi State

University, including 2 seniors and 4 graduate students. None of the participants knew

iTrust before the experiment, but all of them reported being familiar with the healthcare

domain. The participants had all learned about traceability and reported a median of 0.25

years tracing experience (mainly done manually).

During the experiment, each participant (analyst) worked alone in a lab and began by

signing the consent form and by learning how to use the ART-Assist tool. The analyst was

then given hard copies of the UC descriptions and was told to use only ART-Assist and

not to use internet or any other resources in the experiment. We asked the analyst to trace

all 6 UCs and to carry out the tracing tasks in any order they would prefer. A researcher

was present to run the ART-Assist tutorial, to encourage the analyst to think aloud during

tracing, and to conduct an informal exit interview to elicit the analyst’s feedback about

their tracing experience. Each experiment session lasted approximately 1 hour.

6.5 Results and Analysis

ART-Assist logs fine-grained, time-stamped user interactions. In order to extract the

analyst’s actual diet (D Ac) from the logs, we analyze the task environment by modeling

the problem space of tracing. Figure 6.5 shows the state-transition diagram that depicts the

lifecycle of an information item (namely, a traceability link). The analyst may view (scan)

the item as it is presented in ART-Assist’s retrieval page (patch), and further pursue the
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prey (link) if she regards it as relevant. The analyst may refine an item’s (de-)selection for

several times, during which the item can be viewed optionally. Upon analyst’s approval,

the item becomes part of the finally submitted RTM.

5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remove 
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Retrieved 
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Figure 6.5

State-space of an Information Item (Traceability Link)

Modeling the task environment is critical to defining the variables of rational analysis

(cf. Section 6.3.1), especially those appeared in equation (6.2). In our study, ts (scanning

time) denotes the view time for an item that is not selected. In another word, ts refers to

the time the leftmost, self-looped “View” transition in Figure 6.5 takes. This figure shows

a state-space of an information item (traceability link) as a human analyst with the tracing

task interacts with the ART-Assist tool. Boxes show states. Arrows show state transitions

annotated with icons representing the ART-Assist operations (cf. Figure 6.2). The other 4

transitions in Figure 6.5 represent operations on what the analyst believes to be a relevant

link. Thus, the time transitioned to and from the “Selected” state in Figure 6.5 gives rise to

th — the handling time. Based on this, we define the analyst’s actual diet to be the set of
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patches containing handled items, i.e., D Ac = Patch P | ∃ link l ∈ P such that ‘the analyst

handles l as a relevant link at some point during tracing’.
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Figure 6.6

Applying the Diet Model (cf. Figure 6.1-b) to the Experimental Tracing Tasks

For the comparison of D Ac with D Th, Figure 6.6 shows the average case in which

the trace’s information environment shapes the optimal diet selection (R(n) and πn are

both averaged over the 6 UCs). Figure 6.6 provides D Th specific to each UC, along with

the total number of patches (pages) retrieved by ART-Assist. On average, only 13.5% of

the available patches are included in D Th. In contrast, D Ac is much less selective as it

is composed of an average of 45.0% available patches. For all 6 tracing tasks, D Th is

a proper subset of D Ac, which implies that the theory’s predictions are highly accurate.

To evaluate the matching degree with D Th, we expand upon the work of Lawrance et

al. [146] and use the analysts’ consensus to further categorize the patches in D Ac.

• Match refers to the overlap between D Ac and D Th. We define the match is large
if the patch appears in over half of the analysts’ actual diets (i.e., ≥3 analysts’ diets
in our study); otherwise, the match is slight.
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UC1 17 {P1, P2, P3} {P1} {P2, P3} {P6, P8, P11, P12, P16} {P4, P5} 
UC2 19 {P1} {P1} Φ {P3, P4, P11, P19} {P2} 
UC3 15 {P1, P2, P3} {P1, P2, P3} Φ {P7, P8, P13} {P4, P6} 
UC4 12 {P1, P2} {P1, P2} Φ {P4} {P3} 
UC5 13 {P1} {P1} Φ {P2, P3, P4, P5} Φ
UC6 14 {P1, P2} {P1} {P2} {P5, P6, P7, P13} {P3, P4} 

Figure 6.7

Comparing Optimal Forager’s Diet (D Th) with Real Analysts’ Diets (D Ac)

• Departure refers to the difference of D Ac and D Th. We say the departure is large
if the patch is handled by over half of the analysts as they pursue relevant prey in the
patch; otherwise, the departure is slight.

Table 6.2 shows the structural and behavioral aspects of requirements analyst’s infor-

mation foraging. Descriptive statistics are given in terms of (mean± standard− deviation).

Inferential statistics are performed via the Mann-Whitney test [48], a non-parametric test

which was also used by Lawrance et al. [146] for assessing software developer’s informa-

tion foraging. It is evident from Table 6.2 that the matched diets are more profitable than the

departed ones. This should not be surprising since the optimal diet (D Th) is selected based

on the descending order of profitability (π). However, the analysts did pursue in a greater

number of low-profitable prey-patches than in theoretically high-profitable ones (Mann-

Whitney, U = 32.5, p < 0.05). On one hand, this may account for the quality degradation

on the RTM after human vetted the retrieved links [49,62,119,138]. On the other hand, this

may suggest that analysts needed to consume the “bad” in order to recognize the “good”.

In this sense, the correct and incorrect decisions were indeed interdependent.
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Table 6.2

Assessing Human Analyst’s Information Foraging from Structural and Behavioral
Perspectives

D Ac Structural Properties Navigational Behaviors (all time values are in seconds)
Categories π (profitability) cohesion # of revisits ts th t∗ Ac ∆t∗= t∗ Ac−t∗ Th

Match Large 0.32 0.61 0.45 6.11 4.95 29.50 9.55
with D Th Slight 0.27 0.40 0.33 6.05 6.27 35.29 13.19
Departure Slight 0.09 0.35 1.94 7.97 9.58 90.03 56.07
from D Th Large 0.12 0.53 1.05 7.31 8.08 55.64 48.40

Profitability (π) is computed based on the answer set that defines the true links for each

requirement. Under non-experimental settings where no answer set is available, Duan and

Cleland-Huang [69] argued that internal metrics, such as coupling and cohesion, could

be used to assess the quality of the cluster-patch. We adapt this idea and compute the

patch cohesion as the average pairwise TFIDF differences of all the information items

in a given patch. Table 6.2 shows that greater consensus (largely matched and largely

departed) was achieved on more cohesive patches. Further comparison reveals that the

cohesion of analysts’ handled patches (i.e., those in D Ac) is significantly greater than that

of the patches the analysts did not view as relevant (Mann-Whitney, U = 271.0, p < 0.01).

Thus, analysts seem to use cohesion to judge an information patch’s relevance; testing this

hypothesis requires future research.

As far as the navigation behavior is concerned, the patches matched with D Th were

visited mostly once. However, the D Th-departed patches received a surprisingly high

number of revisits. This shows analysts’ struggles with deciding the relevance of certain

prey-patches. Even when relevance was determined, the struggles with D Th-departed

patches continued as analysts expended more time handling the links (th). Interestingly,

the scanning time (ts) stayed roughly the same across the D Ac categories.
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Our final analysis is concerned with analysts’ within-patch residence time (t∗ Ac) and

how it differs from the optimal residence time (t∗ Th). As shown in Table 6.2, t∗ Ac

exhibits considerable variation among D Ac categories, but in all the cases, the actual res-

idence time is greater than t∗ Th. Such deviations from optimality (∆ t∗) were observed

to be substantially greater in D Th-departed diets than in D Th-matched ones (Mann-

Whitney, U=744.5, p<0.01). Figure 6.8 uses the navigation steps to illustrate ∆ t∗. The

value of the <ts, th> pair (cf. equation (6.2)) is instantiated by the average time according

to the analysts’ actual navigations reported in Table 6.2. To reduce clutter, only one sample

∆ t∗ (largely matched) is given in Figure 6.8.
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Figure 6.8

Applying the Patch Model to Plot the Average Information Gain Per Navigation Step
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6.6 Discussion

As our results indicate that discrepancies exist between human analyst’s information

seeking and the behavior determined via foraging theory’s optimality models, we suggest

design guidelines for tools supporting analysts in performing requirements tracing. We

then relate our work to other models and discuss the limitations of our study.

6.6.1 Implications for Tool Support

Our objective of uncovering the gaps from optimality is to enable principled ways to

reduce the gaps. Our study shows several important discrepancies that provide concrete

insights into the behavioral traits of and the obstacles faced by human analysts.

First, although the low-profitable, non-optimal patches (i.e., D Th-departed patches)

turned out to be indispensable for analysts’ information diets, the analysts did struggle to

determine the relevance of those patches. The primary reason, based on our interviews,

was the lack of contextual information when the analysts navigated from one patch (page)

to another. In fact, the analysts often unintentionally returned to locations that had al-

ready been visited. Most agreed that such revisits were wasted interactions since they

had to repeat the relevance judgments. One way to alleviate the struggles is to introduce

explicit tagging or rejecting the patch as a whole, as designed in the work of Duan and

Cleland-Huang [69]. Another support is to leverage advanced information scent model-

ing techniques, such as exploiting analyst’s navigation recency [148], to generate reactive

navigation recommendations.
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Second, while the scanning time (ts) remained approximately constant, the handling

time (th) was longer for D Th-departed diets than for D Th-matched ones. During tracing,

more than half of the analysts expressed uncertainty about whether a link should be placed

in the shopping-cart for checkout. Some suggested that the gathering of traceability infor-

mation could be diversified. For example, a black list of irrelevant links and a working area

for storing to-be-determined links could be added to the tracing tool.

Third, the analysts invariably overspent the within-patch time (t∗ Ac> t∗ Th), espe-

cially when foraging in D Th-departed patches. Enabling analysts to correctly reason about

the patch profitability can help them to shorten the time difference (∆t∗). However, it is not

possible to expect the analysts to have the perfect knowledge about the information envi-

ronment. Our study implies that patch cohesion, one of the internal quality indicators, can

be of much practical value. In this way, cohesion acts as the perceived profitability [146]

and its improvement via clustering [69, 195] has already led to remarkable enhancements

in tracing.

6.6.2 Relationship to Other Models

In what follows we discuss the relationship between our model and other models.

6.6.2.1 Models of Information Seeking and Gathering

Ko et al. [136] suggested that software maintainers’ seeking relevant code follows an

iterative ‘Search-Relate-Collect’ process. While in line with Ko’s model, assisted require-

ments tracing is also related to Web search (e.g., the initiation, selection, and collection

stages described by Hearst [114]). Although it is well known that Web users view only the

188



www.manaraa.com

first few search result pages (e.g., Jansen et al. [124] reported that 80% of the users viewed

only the first 2 pages), our results show that human analysts did go as far as the last page

to collect the relevant traceability information.

6.6.2.2 Foraging-Theoretic Approaches to Code Navigation

Table 6.3 situates our study within the previous research investigating programmer nav-

igation. Because tracing is a new domain for applying foraging theory, our mapping of an

information patch is different from the prior work. The most important difference, in our

opinion, is the use of the diet model in our study to determine D Th, which represents a

novel mechanism for assessing D Ac.

6.6.2.3 Studies of Human Factors in Tracing

Our work complements the studies of analyst’s tracing performance based on the final

RTM’s quality (e.g., [49, 62, 119]). In our study, both the RTM decision and the rational

decision-making process are examined. While our work demonstrates the value of optimal

foraging models, how to expand the analysis to account for the predictable level of human

fallibility [50] and to balance the economics of maintaining and utilizing the requirements

traces [73, 74] remains an open question.

6.6.3 Study Limitations

The applicability of this study’s results may be limited by ART-Assist’s design, opera-

tionalization of analyst’s actual diet, and participants’ unfamilarity with the subject system.
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Table 6.3

Comparing Our Work with Other Foraging-theoretic Models

Fundamentals of infor-
mation foraging theory Patches Scent Diet
Seminal work [146] Classes Textual similarity D Ac

Textual similarity,
PFIS [147] Classes Program topology D Ac

Program topology,
PFIS2 [148] Methods Navigation recency D Ac

Single factors,
PFIS3 [206] Methods Optimal composites D Ac

Pages Textual D Ac,
Our work retrieved similarity D Th

ART-Assist provides basic features commonly found in IR-based tracing tools. The

70% threshold filters out certain true links. Adjusting this value, statically or dynamically,

may alter the analyst’s information foraging behavior.

When defining D Ac, we adopted a behavioral viewpoint by focusing on how to operate

a link (cf. Figure 6.5) rather than what links were approved in the end. Shifting D Ac’s

definition to the final RTM’s perspective would modify an important assumption of the

decision problem. Once assumptions like this are updated, they can feed back into the

rational analysis of the information forager.

Our work with student participants limits how the results could be generalized. Egyed

et al. [73] note that in many industrial settings people have no intimate system knowledge

during trace recovery. There is also precedence in traceability work: prior studies have

used students with low levels of industry experience to represent new people joining a

company [49, 62, 73, 138]. Nevertheless, it would be interesting to study how familiarity

levels may alter the tracing behavior.
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6.7 Conclusions

The main contributions of this chapter are the evolutionary-ecological understanding of

the fundamental mechanisms underlying human analysts’ requirements tracing behaviors,

the theoretical analysis of optimality within the shaping limits placed by tracing’s task

and information environments, the empirical evaluation of the matches and mismatches

between theory’s predictions and analysts’ actual behaviors, and the concrete insights of

the principled ways to increase practical support for software traceability. Building on the

extensive research on the IR-based candidate link recovery methods [10, 37, 55, 121, 264],

the study of human analysts represents a milestone in the traceability literature, as we

now have reached a general consensus regarding the equivalence of the underlying IR

methods [199]. The success of requirements tracing, as measured by the final RTM’s

quality, therefore hinges largely on the analysts’ interactions with and decisions about the

tool’s output. Building on the growing body of work on human factors [49, 62, 119, 138],

it is hoped that our work contributes a step towards understanding the ecologically valid

ways to “design a fast, accurate and certifiable tracing process” [50].
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CHAPTER 7

CONCLUSIONS

This chapter concludes this dissertation, including the main research assumptions, ex-

periments conducted, and final contributions. In addition, we list our main publications in

this domain.

7.1 Contributions Summary

We started our analysis by looking at the indexing process. In particular we have tack-

led the problem of indexing source code for supporting requirements-to-code traceability.

We introduced a feature diagram to describe the indexing process, and conducted an ex-

periment using three datasets to examine some of the diagram’s features and their depen-

dencies. The results showed that considering comments in the indexing process helped to

improve the traceability link quality significantly. Stemming was also found useful when

comments were considered. However, if comments were ignored then the overhead of

stemming was found to be unnecessary.

In the second phase of our analysis, we investigated the potential benefits of utiliz-

ing natural language semantics in automated traceability link retrieval. In particular, we

evaluated the performance of a wide spectrum of semantically-enabled IR methods in cap-

turing and presenting requirements traceability links in software systems. Our objectives
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were to gain more operational insights into these methods, and to provide practical guide-

lines for the design and development of effective requirements tracing and management

tools. To achieve our research objectives, we conducted an experimental analysis using

three datasets from various application domains. Results showed that considering more

semantic relations in traceability link retrieval did not necessarily lead to higher quality

results. Instead, a more focused semantic support, that targets specific semantic relations,

was found to have a greater impact on the overall performance of tracing tools. In addition,

our analysis showed that explicit semantic methods, that exploit local or domain-specific

sources of knowledge, often achieve a more satisfactory performance than latent methods,

or methods that derive semantics from external or general-purpose knowledge sources.

In terms of performance enhancement, we proposed an approach to improving the per-

formance of IR-based automated tracing by examining the cluster hypothesis. The ap-

proach was presented through a set of detailed procedures to cluster candidate traceability

links, identify low quality clusters, and rearrange links in high quality clusters in such a

way that maximizes the browsability. Three open-source datasets from different appli-

cation domains were investigated to discover optimal settings for these procedures. We

further evaluated our approach through a case study to identify the limitations of our ap-

proach and the avenues for future research. The study results showed that our approach

outperformed the baseline, and had more room for improvement.

In addition, we proposed a novel approach for enhancing the performance of automated

tracing tools using refactoring. In particular, we described an experiment for assessing the

effect of applying various types of refactorings on the different performance aspects of
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IR-based tracing methods. To test our hypothesis, we conducted an experimental analysis

using three requirements-to-code datasets from various application domains. Our objective

was to assess the impact of various refactoring methods on the performance of automated

tracing tools based on information retrieval (IR). Results showed that renaming inconsis-

tently named code identifiers, using RENAME IDENTIFIER refactoring, often leads to im-

provements in traceability. In contrast, removing code clones, using EXTRACT METHOD

refactoring, was found to be detrimental. In addition, results showed that moving mis-

placed code fragments, using MOVE METHOD refactoring, had no significant impact on

trace link retrieval. We further evaluated RENAME IDENTIFIER refactoring by comparing

its performance to other strategies often used to overcome the vocabulary mismatch prob-

lem in software artifacts. In addition, we proposed and evaluated various techniques to

mitigate the negative impact of EXTRACT METHOD refactoring. An effective traceability

sign analysis was also conducted to quantify the effect of these refactoring methods on the

vocabulary structure of software systems.

Regarding the presentation aspects of the automated tracing process, we leveraged in-

formation foraging optimality models to characterize a rational decision process in the

domain of automated tracing. Our objective was to offer concrete insights into the ob-

stacles faced by requirements analysts working with IR-based automated tracing tools.

our main contributions were the evolutionary-ecological understanding of the fundamental

mechanisms underlying human analysts’ requirements tracing behaviors, the theoretical

analysis of optimality within the shaping limits placed by tracing’s task and information

environments, the empirical evaluation of the matches and mismatches between theory’s
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predictions and analysts’ actual behaviors, and the concrete insights of the principled ways

to increase practical support for software traceability.

Figure 7.1 summarizes our contributions in this dissertation.

IR-based Automated Tracing 
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Research Contributions

7.2 Publications

The work in this dissertation has resulted in several peer-reviewed journal and con-

ference publications as well as several presentations in various national and international

software engineering venues. The following in a list of our main publications in this do-

main.

1. A. Mahmoud and N. Niu, On the Role of Semantics in Automated Requirements
Tracing, Requirements Engineering Journal, (REJ) (accepted).
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2. A. Mahmoud and N. Niu, Supporting Requirements to Code Traceability through
Refactoring, Requirement Engineering Journal - Special Issue on Best Papers of
RE’13 (S.I. REJ) (accepted).

3. A. Mahmoud and N. Niu, Supporting Requirements Traceability Through Refactor-
ing, International Requirements Engineering Conference (RE 2013), pp. 32-41.

4. A. Mahmoud and N. Niu, Source Code Indexing for Automated Tracing, Inter-
national Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE/ICSE 2011), pp. 3-9.

5. A. Mahmoud and N. Niu, Using Semantics-Enabled Information Retrieval in Re-
quirements Tracing: An Ongoing Experimental Investigation, IEEE Computer Soft-
ware and Applications Conference (COMPSAC 2010), pp. 246-247.

6. A. Mahmoud and N. Niu, A Semantic Relatedness Approach for Traceability Link
Recovery, International Conference on Program Comprehension (ICPC 2012), pp.183-
192.

7. A. Mahmoud, Toward an Effective Automated Tracing Process: A research Agenda,
Student Research Symposium, International Conference on Program Comprehen-
sion (ICPC 2012), pp. 269 - 272.

8. N. Niu and A. Mahmoud, Enhancing Candidate Link Generation for Requirements
Tracing: The Cluster Hypothesis Revisited, International Requirements Engineering
Conference (RE 2012), pp. 81-90.

9. N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, Departures from Optimality: Un-
derstanding Human Analyst’s Information Foraging in Assisted Requirements Trac-
ing, International Conference on Software Engineering (ICSE 2013), pp. 572-581.

10. A. Mahmoud and N. Niu, An Experimental Investigation of Reusable Requirements
Retrieval, International Conference on Information Reuse and Integration (IRI 2010),
pp. 330 - 335.

11. A. Mahmoud and N. Niu, TraCter: A Tool for Candidate Traceability Link Cluster-
ing, International Requirements Engineering Conference, (RE 2011) pp. 335-336.

12. N. Niu, A. Mahmoud, and G. Bradshaw, Information Foraging as a Foundation for
Code Navigation, International Conference on Software Engineering (ICSE 2011),
pp. 816 - 819.
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